Bab 2 Persamaan Kuadratik

2.3a Pembentukan Persamaan Kuadratik daripada Punca

Apabila diberi α dan β ialah punca-punca bagi persamaan ax 2 + bx + c = 0, maka


x = α                atau     x = β
x α = 0         atau     x β = 0
(x α) (x β) = 0
x 2 – ( α + β ) x + αβ = 0

Kesimpulan:
x 2 – (hasil tambah punca ) x + (hasil darab punca) = 0

Contoh:
Bentukkan persamaan kuadratik apabila punca-puncanya adalah seperti berikut:
(a)  3, 1
(b) 2, ¼
(c) , ¼
(d) 3m,2m

Penyelesaian:





Bab 15 Vektor

4.7 Vektor, SPM Praktis (Kertas 2)

Soalan 2:
Diberi AB =( 10 14 ),  OB =( 4 6 ), dan  CD =( m 7 ), carikan
(a)  koordinat A,
(b)  vektor unit dalam arah OA
(c)  nilai m jika CD selari dengan AB.       

Penyelesaian:  
(a)
AB =( 10 14 ),  OB =( 4 6 ) CD =( m 7 ) AB = AO + OB ( 10 14 )=( x y )+( 4 6 ) ( x y )=( 10 14 )( 4 6 ) AO =( 6 8 ) OA =( 6 8 ) A=( 6,8 )

(b)
| OA |= ( 6 ) 2 + ( 8 ) 2 | OA |= 100 =10 the unit vector in the direction of  OA = OA | OA | = ( 6 8 ) 10 = 1 10 ( 6 8 ) =( 3 5 4 5 )

(c)
Given  CD  parallel  AB   CD =k AB ( m 7 )=k( 10 14 ) ( m 7 )=( 10k 14k )
7 = 14k
k= ½
m = 10k = 10 (½) = 5

Bab 15 Vektor

4.6 Vektor, SPM Praktis (Kertas 1) 
Soalan 5:
  p=5 a ˜ 7 b ˜   q=2 a ˜ +3 b ˜   r=( h1 ) a ˜ +( h+k ) b ˜   dengan keadaan h dan k adalah pemalar  
Gunakan maklumat di atas untuk mencari nilai h dan nilai k apabila r= 2p – 3q.

Penyelesaian:
r=2p3q ( h1 ) a ˜ +( h+k ) b ˜ =2( 5 a ˜ 7 b ˜ )3( 2 a ˜ +3 b ˜ ) ( h1 ) a ˜ +( h+k ) b ˜ =10 a ˜ 14 b ˜ +6 a ˜ 9 b ˜ ( h1 ) a ˜ +( h+k ) b ˜ =16 a ˜ 23 b ˜

Bandingkan vektor,
h– 1 = 16
h = 17
h+ k = –23
17 + k = –23
k = –40



Soalan 6:
Titik-titik P, Qdan R adalah segaris. Diberi bahawa PQ =4 a ˜ 2 b ˜  dan  QR =3 a ˜ +( 1+k ) b ˜ , dengan keadaan kialah pemalar. Cari
(a)  nilai k,
(b)  nisbah PQ : QR.

Penyelesaian:
(a)
Jika P, Q dan R adalah segaris, PQ =m QR 4 a ˜ 2 b ˜ =m[ 3 a ˜ +( 1+k ) b ˜ ] 4 a ˜ 2 b ˜ =3m a ˜ +m( 1+k ) b ˜ Bandingan vektor: a ˜ : 4=3m         m= 4 3 b ˜ : 2=m( 1+k ) 2= 4 3 ( 1+k ) 1+k= 6 4 k= 3 2 1 k= 5 2

(b)
PQ =m QR PQ = 4 3 QR PQ QR = 4 3 PQ:QR=4:3



Soalan 7:
Diberi bahawa x ˜ =3 i ˜ +m j ˜  dan  y ˜ =4 i ˜ 3 j ˜ ,, cari nilai m jika vektor x ˜  selari dengan vektor  y ˜ .

Penyelesaian:
Jika vektor  x ˜  selari dengan vektor  y ˜ x ˜ =h y ˜ ( 3 i ˜ +m j ˜ )=h( 4 i ˜ 3 j ˜ ) 3 i ˜ +m j ˜ =4h i ˜ 3h j ˜ Bandingkan vektor: i ˜ :  3=4h         h= 3 4 j ˜ :  m=3h         m=3( 3 4 )= 9 4


Bab 15 Vektor


4.6.2 Vektor, SPM Praktis (Kertas 1)

Soalan 3:
Rajah di bawah menunjukkan sebuah segi empat tepat OABC dan titik D terletak pada garis lurus OB.


Diberi bahawa OD = 3DBUngkapkan O D , dalam sebutan x ˜  dan  y ˜ .

Penyelesaian:
O B = O A + A B = 3 x ˜ + 12 y ˜ O D = 3 D B O D D B = 3 1 O D : D B = 3 : 1 O D = 3 4 O B = 3 4 ( 3 x ˜ + 12 y ˜ ) = 9 4 x ˜ + 9 y ˜



Soalan 4:
Rajah di bawah menunjukkan sebuah segi empat selari ABCD dan BED ialah satu garis lurus.


Diberi bahawa  AB =7 p ˜ ,  AD =5 q ˜  dan DE=3EB,  ungkap dalam sebutan  p ˜  dan  q ˜ . (a)  BD (b)  EC

Penyelesaian:
(a)
Bagi segi empat selari, A B = D C = 7 p ˜ , A D = B C = 5 q ˜ . B D = B A + A D B D = 7 p ˜ + 5 q ˜

(b)
D E =3 E B E B D E = 1 3 E B : D E = 1 : 3 E B = 1 4 D B = 1 4 ( B D ) = 1 4 [ ( 7 p ˜ + 5 q ˜ ) ] Dari (a) = 7 4 p ˜ + 5 4 q ˜

E C = E B + B C E C = 7 4 p ˜ + 5 4 q ˜ + 5 q ˜ E C = 7 4 p ˜ + 25 4 q ˜


Bab 15 Vektor

4.6 Vektor, SPM Praktis (Kertas 1)
Soalan 1:
Diberi bahawa O (0, 0), A(–3, 4) dan B(-9, 12), Cari dalam sebutan vektor unit i ˜  dan  j ˜  
(a) AB  
(b)  vektor unit dalam arah AB

Penyelesaian:  
(a)
A=(3,4), dengan itu  OA =3 i ˜ +4 j ˜ B=(9,12), dengan itu  OB =9 i ˜ +12 j ˜ AB = AO + OB AB =( 3 i ˜ +4 j ˜ )+( 9 i ˜ +12 j ˜ ) AB =3 i ˜ 4 j ˜ 9 i ˜ +12 j ˜ AB =6 i ˜ +8 j ˜  

(b)
Magnitud  | A B | , | A B | = ( 6 ) 2 + ( 8 ) 2 = 10 Maka vektor unit dalam arah  A B , A B | A B | = 1 10 ( 6 i ˜ + 8 j ˜ ) = 3 5 i ˜ + 4 5 j ˜



Soalan 2:
Diberi bahawa A(–3, 2), B(4, 6) dan C(m, n), cari nilai m dan n supaya 2 AB + BC =( 12 3 ).

Penyelesaian:  
A=( 3 2 ), B=( 4 6 ) and C=( m n ) AB = AO + OB AB =( 3 2 )+( 4 6 )=( 7 4 ) BC = BO + OC BC =( 4 6 )+( m n )=( 4+m 6+n )

Given 2 AB + BC =( 12 3 ) 2( 7 4 )+( 4+m 6+n )=( 12 3 ) ( 144+m 86+n )=( 12 3 )

10 + m = 12
m= 2

2 + n = –3
n= –5

Bab 14 Pengamiran


3.8.2 Pengamiran, SPM Praktis (Kertas 2)

Soalan 4:
Rajah di bawah menunjukkan suatu lengkung = y2 – 1 yang bersilang dengan garis lurus 3y = 2x pada titik Q.

Hitungkan isipadu janaan apabila rantau berlorek itu dikisarkan melalui 360opada paksi-y.


Penyelesaian:



x
= y2 – 1 ---- (1)
3y = 2x
x = 3 2 y ( 2 ) Gantikan (2) ke dalam (1), 3 2 y = y 2 1

2y2 – 3y – 2 = 0
(2y + 1) (y – 2) = 0
y = –½   atau   y = 2

apabila y=2,x= 3 2 ( 2 )=3, Q=( 3, 2 ) I 1 ( Isipadu kon ) = 1 3 π r 2 h= 1 3 π ( 3 ) 2 ( 2 ) =6π  unit 3

I 2 ( Isipadu lengkung ) = π 1 2 x 2 d y = π 1 2 ( y 2 1 ) 2 d y = π 1 2 ( y 4 2 y 2 + 1 ) d y = π [ y 5 5 2 y 3 3 + y ] 1 2 = π [ ( 2 5 5 2 ( 2 ) 3 3 + 2 ) ( 1 5 5 2 ( 1 ) 3 3 + 1 ) ] = π ( 46 15 8 15 ) = 38 15 π unit 3

Maka isipadu janaan = I 1 I 2 = 6 π 38 15 π = 52 15 π unit 3


Bab 14 Pengamiran

3.8 Pengamiran, SPM Praktis (Kertas 2)
Soalan 3:
Fungsi kecerunan suatu lengkung melalui titik P(2, -14) ialah 6x2 – 12x.
Cari
(a)  persamaan lengkung itu,
(b)  koordinat titik-titik pusingan lengkung itu, dan tentukan sama ada setiap titik pusingan itu adalah maksimum atau minimum.                                                       

Penyelesaian:
(a)
Fungsi kecerunan suatu lengkung, dy/dx = 6x2 – 12x
persamaan lengkung,
y= ( 6 x 2 12x )  dx y= 6 x 3 3 12 x 2 2 +c

y = 2x3 – 6x2 + c
–14 = 2(2)3 – 6(2)2 + c, di titik P (2, –14)
–14 = –8 + c
c = –6
y = 2x3 – 6x2 – 6

(b)
dy/dx = 6x2 – 12x
Di titik pusingan, dy/dx = 0
6x2 – 12x = 0
6(x – 2) = 0
x = 0, x = 2

x = 0, y = 2(0)3 – 6(0)2 – 6 = –6
x = 2, y = 2(2)3 – 6(2)2 – 6 = –14

d 2 y d x 2 =12x12 When x=0 d 2 y d x 2 =12( 0 )12=12 <0 ( 0,6 ) adalah titik maksimum. When x=2 d 2 y d x 2 =12( 2 )12=12 >0 ( 2,14 ) adalah titik minimum.


Bab 14 Pengamiran

3.8 Pengamiran, SPM Praktis (Kertas 2)
Soalan 1:
Suatu lengkung dengan fungsi kecerunan 5x 5 x 2  mempunyai titik pusingan di (m, 9).
(a)  Cari nilai m.
(b)  Tentukan sama ada titik pusingan ini adalah titik maksimum atau titik minimum.
(c)  Cari persamaan lengkung itu.

Penyelesaian:
(a)
dy dx =5x 5 x 2 Di titik pusingan ( m,9 ),  dy dx =0 5m 5 m 2 =0 5 m 2 =5m m 3 =1 m=1 

(b)
dy dx =5x 5 x 2 =5x5 x 2 d 2 y d x 2 =5+ 10 x 3 Apabila x=1,  d 2 y d x 2 =15 (> 0)  
Dengan itu, (1, 9) adalah satu titik minimum.

(c)
y= ( 5x5 x 2 )  dx y= 5 x 2 2 + 5 x +c Pada titik pusingan ( 1,9 ), x=1 dan y=9. 9= 5 ( 1 ) 2 2 + 5 1 +c c= 3 2 Persamaan lengkung: y= 5 x 2 2 + 5 x + 3 2



Soalan 2:
Suatu lengkung mempunyai fungsi kecerunan kx2– 7x, dengan keadaan k ialah pemalar. Tangen kepada lenkung itu pada titik (1, 3 ) adalah selari dengan garis lurus y + x – 4 = 0.
Cari
(a)  nilai k,
(b)  persamaan lengkung itu.

Penyelesaian:
(a)
y + x – 4 = 0
y = – x + 4
m = –1

f ’(x) = kx2– 7x
Diberi tangen kepada lenkung itu pada titik (1, 3 ) adalah selari dengan garis lurus
kx2 – 7x = –1
k (1)2– 7 (1) = –1
k – 7 = –1
k = 6

(b)
f'( x )=6 x 2 7x f( x )= ( 6 x 2 7x )  dx f( x )= 6 x 3 3 7 x 2 2 +c 3=2 ( 1 ) 3 7 ( 1 ) 2 2 +c    di titik ( 1,3 ) c= 9 2 f( x )=2 x 3 7 x 2 2 + 9 2


Bab 14 Pengamiran


3.8.5 Pengamiran, SPM Praktis (Kertas 2)

Soalan 6:
Rajah di bawah menunjukkan sebahagian daripada lengkung y = 2 ( 3 x 2 ) 2  yang melalui B (1, 2).


(a)   Carikan persamaan tangen kepada lengkung itu pada titik B.
(b)   Suatu rantau dibatasi oleh lengkung itu, paksi-x, garis lurus x = 2 dan = 3.
(i) Cari luas rantau yang berlorek.
(ii) Rantau itu dikisarkan melalui 360o pada paksi-x.
Carikan isipadu janaan, dalam sebutan π.


Penyelesaian:
(a)
y = 2 ( 3 x 2 ) 2 = 2 ( 3 x 2 ) 2 d y d x = 4 ( 3 x 2 ) 3 ( 3 ) d y d x = 12 ( 3 x 2 ) 3 d y d x = 12 ( 3 ( 1 ) 2 ) 3 , x = 1
y – 2 = –12 (x – 1)
y – 2 = –12x + 12
y = –12x + 14

(b)(i)
Area = 2 3 y d x = 2 3 2 ( 3 x 2 ) 2 d x = 2 3 2 ( 3 x 2 ) 2 d x = [ 2 ( 3 x 2 ) 1 1 ( 3 ) ] 2 3 = [ 2 3 ( 3 x 2 ) ] 2 3 = [ 2 3 [ 3 ( 3 ) 2 ] ] [ 2 3 [ 3 ( 2 ) 2 ] ] = 2 21 + 1 6 = 1 14 unit 2

(b)(ii)
Isipadu janaan
= π y 2 d x = π 2 3 4 ( 3 x 2 ) 4 d x = π 2 3 4 ( 3 x 2 ) 4 d x = π [ 4 ( 3 x 2 ) 3 3 ( 3 ) ] 2 3 = π [ 4 9 ( 3 x 2 ) 3 ] 2 3 = π [ 4 9 [ 3 ( 3 ) 2 ] 3 ] [ 4 9 [ 3 ( 2 ) 2 ] 3 ] = π ( 4 3087 + 4 576 ) = 31 5488 π unit 3


Bab 14 Pengamiran


3.8.3 Pengamiran, SPM Praktis (Kertas 2)

Soalan 5
Dalam rajah di bawah, garis lurus WY ialah normal kepada lengkung y = 1 2 x 2 + 1  pada B (2, 4). Garis lurus BQ adalah selari dengan paksi-y.


Cari
(a) nilai t,
(b) luas rantau yang berlorek,
(c) Isipadu janaan, dalam sebutan π, apabila rantau yang dibatasi oleh lengkung itu, paksi-dan garis lurus y = 4 dikisarkan melalui 360o pada paksi-y.


Penyelesaian:
(a)
y= 1 2 x 2 +1 Kecerunan tangen,  dy dx =2( 1 2 x )=x pada titik B dy dx =2 Kecerunan normal,  m 2 = 1 2 40 2t = 1 2 8=2+t t=10  

(b)
Luas rantau yang berlorek
= Luas di bawah lengkung + Luas segi tiga BQY
= 0 2 ( 1 2 x 2 + 1 ) d x + 1 2 ( 10 2 ) ( 4 ) = [ x 3 6 + x ] 0 2 + 16 = [ 8 6 + 2 ] 0 + 16 = 19 1 3 unit 2

(c)
Pada paksi-y, x = 0, y = ½ (0) + 1 = 1
y = 1 2 x 2 + 1 x 2 = 2 y 2 Isipadu janaan = π x 2 d y = π 1 4 ( 2 y 2 ) d y = π [ y 2 2 y ] 1 4 = π [ ( 16 8 ) ( 1 2 ) ] = 9 π unit 3