Bab 16 Fungsi Trigonometri

5.7.5 Fungsi Trigonometri, SPM Praktis (Kertas 1)

Soalan 11:
Buktikan identiti kos2x1sinx=1+sinx 

Peneyelesaian:
Sebelah kiri=kos2x1sinx=1sin2x1sinxsin2x+kos2x=1=(1+sinx)(1sinx)1sinx=1+sinx= Sebelah kanan 


Soalan 12:
Buktikan identiti sin2xkos2x=tan2x1tan2x+1  

Peneyelesaian:
Sebelah kanan tan2x1tan2x+1=sin2xcos2x1sin2xcos2x+1tanx=sinxcosx=sin2xcos2xcos2xsin2x+cos2xcos2x=sin2xcos2xsin2x+cos2x=sin2xcos2xsin2x+cos2x=1=Sebelah kiri


Soalan 13:
Buktikan identiti tan2 θ – sin2 θ = tan2θ sin2 θ

Peneyelesaian:
Sebelah kiri=tan2θsin2θ=sin2θcos2θsin2θ=sin2θsin2θcos2θcos2θ=sin2θ(1cos2θ)cos2θ=sin2θsin2θcos2θ=(sin2θcos2θ)(sin2θ)=tan2θsin2θ=Sebelah kanan


Soalan 14:
Buktikan identiti kosek2 θ (sek2 θ – tan2 θ) – 1 = kot2 θ

Peneyelesaian:
Sebelah kiri,
kosek2 θ (sek2θ – tan2 θ) – 1
= kosek2 θ (1) – 1  ← (tan2 θ + 1 = sek2θ
                                    sek2 θ – tan2θ  = 1)
= kosek2 θ – 1
= kot2 θ  (1 + kot2 θ = kosek2 θ
                        kosek2 θ – 1 = kot2 θ  )
= Sebelah kanan