5.7.5 Fungsi Trigonometri, SPM Praktis (Kertas 1)
Soalan 11:
Buktikan identiti kos2x1−sinx=1+sinx
Peneyelesaian:
Sebelah kiri=kos2x1−sinx=1−sin2x1−sinx←sin2x+kos2x=1=(1+sinx)(1−sinx)1−sinx=1+sinx= Sebelah kanan
Soalan 12:
Buktikan identiti sin2x−kos2x=tan2x−1tan2x+1
Peneyelesaian:
Sebelah kanan tan2x−1tan2x+1=sin2xcos2x−1sin2xcos2x+1←tanx=sinxcosx=sin2x−cos2xcos2xsin2x+cos2xcos2x=sin2x−cos2xsin2x+cos2x=sin2x−cos2x←sin2x+cos2x=1=Sebelah kiriSoalan 13:
Buktikan identiti tan2 θ
– sin2 θ = tan2θ sin2 θ
Peneyelesaian:
Sebelah kiri=tan2θ−sin2θ=sin2θcos2θ−sin2θ=sin2θ−sin2θcos2θcos2θ=sin2θ(1−cos2θ)cos2θ=sin2θsin2θcos2θ=(sin2θcos2θ)(sin2θ)=tan2θsin2θ=Sebelah kananSoalan 14:
Buktikan identiti kosek2 θ
(sek2 θ – tan2 θ) – 1 = kot2 θ
Peneyelesaian:
Sebelah kiri,
kosek2 θ
(sek2θ – tan2 θ) – 1
= kosek2 θ
(1) – 1 ← (tan2 θ + 1 = sek2θ
sek2 θ – tan2θ = 1)
= kosek2 θ
– 1
= kot2 θ
←(1 + kot2 θ = kosek2 θ
kosek2 θ – 1 = kot2 θ )
= Sebelah kanan