Bab 3 Fungsi Kuadratik

3.2 Nilai Maksimum dan Nilai Minimum Fungsi Kuadratik

Titik Maksimum dan Titik Minimum

1.      Suatu fungsi kuadratik  f ( x ) = ax 2 + bx + c  boleh diungkapkan dalam bentuk f ( x ) = a ( x + p ) 2   + q  dengan cara menyempurnakan kuasa dua.
2.      Titik maksimum atau titik minimum boleh ditentukan daripada persamaan f (x ) = a (x + p )2 + q  .

(A) Titik Minimum
1. Fungsi kuadratik f (x ) mempunyai nilai minimum jika a ialah positif
2. Fungsi kuadratik f (x ) mempunyai nilai minimum apabila (x + p) = 0.
3. Nilai minimum ialah q.
4. Titik minimum ialah (p, q).

(B) Titik Maksimum
1. Fungsi kuadratik f (x ) mempunyai nilai maksimum jika a ialah negatif .
2. Fungsi kuadratik f (x ) mempunyai nilai maksimum apabila (x + p) = 0.
3. Nilai maksimum ialah q.
4. Titik maksimum ialah (p, q).


Contoh:
Cari titik maksimum atau titik minimum bagi setiap persamaan kuadratik yang berikut.
(a) f (x ) = (x 3)2 + 7
(b) f (x ) = 5 3(x + 15)2

Penyelesaian:
(a) f (x ) = (x 3)2 + 7
a = 1, p = 3, q = 7

a > 0, fungsi kuadratik mempunyai titik minimum.
Titik minimum = (p, q) = (3, 7)

(b) f (x ) = 5 3(x + 15)2
a = 3 , p = 15, q = 5

a < 0, fungsi kuadratik mempunyai titik maksimum.
Titik maksimum = ( p, q) = ( –15 , 5 )