Bab 3 Fungsi Kuadratik

3.7 Fungsi Kuadratik, SPM Praktis (Soalan Panjang)

Soalan 1:
Tanpa menggunakan kaedah pembezaan atau melukis graf, cari nilai maksimum atau nilai minimum bagi fungsi y = 2 + 4x – 3x2. Seterusnya, cari persamaan paksi simetri bagi graf fungsi itu.

Penyelesaian:
Menyempurnakan kuasa dua bagi fungsi y dalam bentuk y = a(x+ p)2 + q untuk mencari nilai maksimum  atau nilai minimum bagi fungsi y.

y = 2 + 4x – 3x2
y = – 3x2 + 4x + 2 ← (Tulis dalam bentuk am)
y=3[ x 2 4 3 x 2 3 ] y=3[ x 2 4 3 x+ ( 4 3 × 1 2 ) 2 ( 4 3 × 1 2 ) 2 2 3 ] y=3[ ( x 2 3 ) 2 ( 2 3 ) 2 2 3 ]  

y=3[ ( x 2 3 ) 2 4 9 6 9 ] y=3[ ( x 2 3 ) 2 10 9 ] y=3 ( x 2 3 ) 2 + 10 3 Bentuk a (x+p) 2 +q

Didapati a = –3 < 0,
maka fungsi y mempunyai nilai maksimum 10 3 . 
x 2 3 =0 x= 2 3
Persamaan paksi simetri bagi graf fungsi itu ialah x= 2 3 .  




Soalan 2:
Fungsi kuadratik f(x) = x2 – 4px + 5p2 + 1 mempunyai nilai minimum m2 + 2p, dengan keadaan m dan p adalah pemalar.
(a) Dengan menggunakan kaedah menyempurnakan kuasa dua, tunjukkan bahawa m = p – 1.
(b) Seterusnya, atau dengan cara lain, carikan nilai p dan nilai m jika graf bagi fungsi itu bersimetri pada x = m2 – 1.

Penyelesaian:
(a)
f( x )= x 2 4px+5 p 2 +1 = x 2 4px+ ( 4p 2 ) 2 ( 4p 2 ) 2 +5 p 2 +1 = ( x2p ) 2 + p 2 +1 Nilai minimum, m 2 +2p= p 2 +1 m 2 = p 2 2p+1 m 2 = ( p1 ) 2 m=p1

(b)
x= m 2 1 2p= m 2 1 p= m 2 1 2 Diberi m=p1p=m+1 m+1= m 2 1 2 2m+2= m 2 1 m 2 2m3=0 ( m3 )( m+1 )=0 m=3 atau 1 Apabila m=3, p= 3 2 1 2 =4