Bab 2 Persamaan Kuadratik

2.6 Persamaan Kuadratik, SPM Praktis (Kertas 2)
Soalan 2:
Diberi α dan β ialah punca-punca bagi persamaan kuadratik (2x + 5)(x + 1) + p = 0 dengan keadaan αβ = 3 dan p ialah pemalar.
Cari nilai p, α dan β.

Penyelesaian:
(2x + 5)(x + 1) + p = 0
2x2 + 2x + 5x + 5 + p = 0
2x2 + 7x + 5 + p = 0
*Bandingkan dengan, x2 – (hasil tambah dua punca)x + hasil darab dua punca = 0
x 2 + 7 2 x+ 5+p 2 =0 bahagi kedua-dua belah dengan 2  
Hasil darab dua punca, αβ = 3
5+p 2 =3 
5 + p = 6
p = 1

Hasil tambah dua punca = 7 2  
  α+β= 7 2   (1) dan αβ=3   (2) daripada (2), β= 3 α    (3) Gantikan (3) ke dalam (1), α+ 3 α = 7 2  

2+ 6 = 7α  ← (darab kedua-dua belah dengan 2α)
2+ 7α + 6 = 0
(2α + 3)(α + 2) = 0
2α + 3 = 0      atau     α + 2 = 0
α= 3 2                        α = –2

Gantikan α= 3 2  dalam (3), β= 3 3 2 =3( 2 3 )=2  

Gantikan α = –2 dalam (3),

β= 3 2 Oleh itu, p=1, dan apabila α= 3 2 ,β=2 dan α=2,β= 3 2 .