Bab 17 Pilir Atur dan Gabungan


Bab 6 Pilir Atur dan Gabungan
 
6.1.1 Pilir Atur (Bahagian 1)

(A) Prinsip Pendaraban
Jika suatu peristiwa A boleh berlaku dalam cara dan suatu peristiwa B boleh berlaku dalam s cara, maka bilangan cara peristiwa A boleh berlaku diikuti dengan berlakunya peristiwa B ialah × s cara yang berlainan.

Contoh 1:
Terdapat 3 jalan raya berlainan dari bandar P ke bandar Q dan 4 jalan raya berlainan dari bandar Q ke bandar R. Cari bilangan cara seorang pemandu teksi boleh memilih untuk mengangkut pelancong dari bandar P ke bandar R melalui bandar Q.  
 
Penyelesaian:
3 × 4 = 12
 


(B) Pilih Atur
 


Contoh 2:
Hitungkan setiap yang berikut:
(a) 7!
(b) 4!6!
(c) 0!5!
(d)  7! 5! (e)  8! 4! (f)  n! ( n2 )! (g)  n!0! ( n1 )! (h)  3!( n+1 )! 2!n!

Penyelesaian:
(a) 7! = 7 × 6 × 5 × 4 × 3 × 2 × 1 = 5040

(b) 4!6! = (4 × 3 × 2 × 1)( 6 × 5 × 4 × 3 × 2 × 1) = 17280

(c) 0!5! = (1)( 5 × 4 × 3 × 2 × 1) = 120

(d)  7! 5! = 7 ×6 ×5! 5! =7×6=42 (e)  8! 4! = 8 ×7 ×6 ×5 ×4! 4! =8×7×6×5=1680 (f)  n! ( n2 )! = n( n1 )( n2 ) ( n2 ) =n( n1 ) (g)  n!0! ( n1 )! = n( n1 )( 1 ) ( n1 ) =n (h)  3!( n+1 )! 2!n! = 3×2!( n+1 )( n )( n1 ) 2!n( n1 ) =3( n+1 )


Gunakan Kalkulator: