15.2.1 Trigonometry, PT3 Focus Practice


15.2.1 Trigonometry, PT3 Focus Practice

Question 1:
Diagram below shows a right-angled triangle ABC.



It is given that  cosxo=513 , calculate the length, in cm, of AB.

Solution:
cosxo=ABACcosxo=513AB39=513AB=513×39 =15 cm



Question 2:
In the diagram, PQR and QTS are straight lines.


It is given that tany=34 , calculate the length, in cm, of RS.

Solution:
In  PQT,tany=PQQT34=6QTQT=6×43 =8 cmIn QRS, QS=8+8=16 cmRS2=122+162  pythagoras' Theorem    =144+256  =400RS=400 =20 cm



Question 3:
In the diagram, PQR is a straight line.

It is given that   cosxo=35 , hence sin yo =

Solution:
cosxo=PQPSPQ10=35PQ=35×10 =6 cmQR=PRPQ=216=15 cm


QS2=10262 pythagoras' Theorem    =10036   =64QS=64 =8 cmRS2=152+82   =225+64   =289RS=289 =17 cmsinyo=1517


Question 4:
Diagram below consists of two right-angled triangles.

Determine the value of cos xo.

Solution:
AC=132122 =25 =5 cmCD=5232 =16 =4 cmcosxo=CDAC  =45


Question 5:
Diagram below consists of two right-angled triangles ABE and DBC.
ABC and EBD are straight lines.



It is given that sinxo=513 and cosyo=35.
(a) Find the value of tan xo.
(b)   Calculate the length, in cm, of ABC.

Solution:
(a)
sinxo=513, DC=13 cmBC=13252 =144 =12 cmThus, tanxo=512

(b)
cosyo=AB15  35=AB15AB=9 cmThus, ABC=9+12 =21 cm