Quadratic Equations, SPM Practice (Paper 2)


Question 4:
It is given α and β are the roots of the quadratic equation x (x – 3) = 2k – 4, where k is a constant.
(a) Find the range of values of k if αβ. (b) Given  α 2  and  β 2  are the roots of another quadratic equation      2 x 2 +tx4=0, where t is a constant, find the value of t and of k.

Solution:
(a) x( x3 )=2k4 x 2 3x+42k=0 a=1, b=3, c=42k                     b 2 4ac>0 ( 3 ) 2 4( 1 )( 42k )>0                916+8k>0                             8k>7                               k> 7 8

(b) From the equation  x 2 3x+42k=0, α+β= b a          = 3 1          =3.............( 1 ) αβ= c a     = 42k 1     =42k.............( 2 ) From the equation 2 x 2 +tx4=0, α 2 + β 2 = t 2 α+β=t.............( 3 ) α 2 × β 2 = 4 2 αβ=8.............( 4 ) Substitute (1)=(3), 3=t t=3 Substitute (2)=(4), 42k=8 4+8=2k k=6