Quadratic Equations, SPM Practice (Paper 2) Posted on April 18, 2020 by user Question 4:It is given α and β are the roots of the quadratic equation x (x – 3) = 2k – 4, where k is a constant. (a) Find the range of values of k if α≠β. (b) Given α 2 and β 2 are the roots of another quadratic equation 2 x 2 +tx−4=0, where t is a constant, find the value of t and of k. Solution: (a) x( x−3 )=2k−4 x 2 −3x+4−2k=0 a=1, b=−3, c=4−2k b 2 −4ac>0 ( −3 ) 2 −4( 1 )( 4−2k )>0 9−16+8k>0 8k>7 k> 7 8 (b) From the equation x 2 −3x+4−2k=0, α+β=− b a =− −3 1 =3.............( 1 ) αβ= c a = 4−2k 1 =4−2k.............( 2 ) From the equation 2 x 2 +tx−4=0, α 2 + β 2 =− t 2 α+β=−t.............( 3 ) α 2 × β 2 =− 4 2 αβ=−8.............( 4 ) Substitute (1)=(3), 3=−t t=−3 Substitute (2)=(4), 4−2k=−8 4+8=2k k=6