Long Questions (Question 2)


Question 2:
Diagram below shows a semicircle PTQ, with centre O and quadrant of a circle RST, with centre R.

[Use π = 3.142]
Calculate
(a) the value of θ, in radians,
(b) the perimeter, in cm, of the whole diagram,
(c) the area, in cm2, of the shaded region.

Solution:
( a ) sinROT= 2.5 5  ROT= 30 o θ= 180 o 30 o = 150 o   =150× π 180   =2.618 rad


( b ) Length of arc PT=rθ    =5×2.618    =13.09 cm Length of arc ST= π 2 ×2.5   =3.9275 cm O R 2 + 2.5 2 = 5 2   O R 2 = 5 2 2.5 2 OR=4.330 Perimeter=13.09+3.9275+2.5+4.330+5    =28.8475 cm


( c ) Area of shaded region =Area of quadrant RSTArea of quadrant RQT Area of quadrant RQT =Area of OQTArea of OTR = 1 2 ( 5 ) 2 ×( 30× π 180 ) 1 2 ( 4.33 )( 2.5 ) =1.1333  cm 2 Area of shaded region =Area of quadrant RSTArea of quadrant RQT = 1 2 ( 2.5 ) 2 ×( 90× π 180 )1.1333 =3.7661  cm 2