Long Questions (Question 4)


Question 4:
Solutions by scale drawing will not be accepted.
Diagram below shows a triangle PRS. Side PR intersects the y-axis at point Q.

(a) Given PQ : QR = 2 : 3, find
(i) The coordinates of P,
(ii) The equation of the straight line PS,
(iii) The area, in unit2, of triangle PRS.
(b) Point M moves such that its distance from point R is always twice its distance from point S.
Find the equation of the locus M.

Solution:
(a)(i) 
P=( 2( 6 )+3h 2+3 , 2( 12 )+3k 2+3 ) ( 0,6 )=( 12+3h 5 , 24+3k 5 ) 12+3h 5 =0        3h=12  h=4 24+3k 5 =6 3k=3024 k=2 P=( 4,2 )

(a)(ii) 
m PS = 2( 6 ) 42  = 8 6  = 4 3 Equation of PS: y y 1 = 4 3 ( x2 ) y( 6 )= 4 3 x+ 8 3 3y+18=4x+8 3y=4x10

(a)(iii) 
Area of  PRS = 1 2 | 4   2    6   2  6  12   4 2 | = 1 2 | ( 24+24+12 ) ( 43648 )| = 1 2 | 60 ( 80 )| =70  unit 2

(b) 
Let P=( x,y ) MR=2MS ( x6 ) 2 + ( y12 ) 2 =2 ( x2 ) 2 + ( y+6 ) 2 ( x6 ) 2 + ( y12 ) 2 =4[ ( x2 ) 2 + ( y+6 ) 2 ] x 2 12x+36+ y 2 24y+144=4[ x 2 4x+4+ y 2 +12y+36 ] x 2 12x+ y 2 24y+180=4 x 2 16x+4 y 2 +48y+160 3 x 2 +3 y 2 4x+72y20=0