Short Questions (Question 12 – 14)


Question 12
Solve the equation,  log 2 5 x + log 4 16 x = 6

Solution:
log 2 5 x + log 4 16 x = 6 log 2 5 x + log 2 16 x log 2 4 = 6 log 2 5 x + log 2 16 x 2 = 6 2 log 2 5 x + log 2 16 x = 12 log 2 ( 5 x ) 2 + log 2 16 x = 12 log 2 ( 25 x ) + log 2 16 x = 12 log 2 ( 25 x ) ( 16 x ) = 12 log 2 400 x 2 = 12 400 x 2 = 2 12 x 2 = 10.24 x = 3.2




Question 13
Given that 2 log2 (xy) = 3 + log2x + log2 y
Prove that x2 + y2– 10xy = 0.

Solution:
2 log2 (xy) = 3 + log2x + log2 y
log2 (xy)2 = log2 8 + log2 x + log2y
log2 (xy)2 = log2 8xy
(xy)2 = 8xy
x2– 2xy + y2 = 8xy
x2 + y2 – 10xy = 0 (proven)



Question 14 (2 marks):
Given 2p + 2p = 2k. Express p in terms of k.

Solution:
2 p + 2 p = 2 k 2( 2 p )= 2 k 2 p = 2 k 2 1 2 p = 2 k1 p=k1