5.5.1 Proving Trigonometric Identities Using Addition Formula And Double Angle Formulae (Part 1) Posted on April 22, 2020 by user Example 2: Prove each of the following trigonometric identities. (a) 1 + cos 2 x sin 2 x = cot x (b) cot A sec 2 A = cot A + tan 2 A (c) s i n x 1 − c o s x = cot x 2 Solution: (a) L H S = 1 + cos 2 x sin 2 x = 1 + ( 2 cos 2 x − 1 ) 2 sin x cos x = 2 cos 2 x 2 sin x cos x = cos x sin x = cot x = R H S (proven) (b) R H S = cot A + tan 2 A = cos A sin A + sin 2 A cos 2 A = cos A cos 2 A + sin A sin 2 A sin A cos 2 A = cos A ( cos 2 A − sin 2 A ) + sin A ( 2 sin A cos A ) sin A cos 2 A = cos 3 A − cos A sin 2 A + 2 sin 2 A cos A sin A cos 2 A = cos 3 A + cos A sin 2 A sin A cos 2 A = cos A ( cos 2 A + sin 2 A ) sin A cos 2 A = cos A sin A cos 2 A ← sin 2 A + cos 2 A = 1 = ( cos A sin A ) ( 1 cos 2 A ) = cot A sec 2 A (c) L H S = s i n x 1 − c o s x = 2 s i n x 2 cos x 2 1 − ( 1 − 2 s i n 2 x 2 ) ← sin x = 2 s i n x 2 cos x 2 , cos x = 1 − 2 sin 2 x 2 = 2 s i n x 2 cos x 2 2 s i n 2 x 2 = cos x 2 s i n x 2 = cot x 2 = R H S (proven)