5.5.1 Proving Trigonometric Identities Using Addition Formula And Double Angle Formulae (Part 1)


Example 2:
Prove each of the following trigonometric identities.
(a) 1 + cos 2 x sin 2 x = cot x (b) cot A sec 2 A = cot A + tan 2 A (c) s i n x 1 c o s x = cot x 2

Solution:
(a)
L H S = 1 + cos 2 x sin 2 x = 1 + ( 2 cos 2 x 1 ) 2 sin x cos x = 2 cos 2 x 2 sin x cos x = cos x sin x = cot x = R H S (proven)


(b)
R H S = cot A + tan 2 A = cos A sin A + sin 2 A cos 2 A = cos A cos 2 A + sin A sin 2 A sin A cos 2 A = cos A ( cos 2 A sin 2 A ) + sin A ( 2 sin A cos A ) sin A cos 2 A = cos 3 A cos A sin 2 A + 2 sin 2 A cos A sin A cos 2 A = cos 3 A + cos A sin 2 A sin A cos 2 A = cos A ( cos 2 A + sin 2 A ) sin A cos 2 A = cos A sin A cos 2 A sin 2 A + cos 2 A = 1 = ( cos A sin A ) ( 1 cos 2 A ) = cot A sec 2 A


(c)
L H S = s i n x 1 c o s x = 2 s i n x 2 cos x 2 1 ( 1 2 s i n 2 x 2 ) sin x = 2 s i n x 2 cos x 2 , cos x = 1 2 sin 2 x 2 = 2 s i n x 2 cos x 2 2 s i n 2 x 2 = cos x 2 s i n x 2 = cot x 2 = R H S (proven)