Basic Integration Posted on April 22, 2020 by user 3.1 Integration as the Inverse of Differentiation, Integration of axn and integration of the Functions of the Sum/Difference of Algebraic Terms Type 1: ∫ a d x = a x + C Example ∫ 2 d x = 2 x + C Type 2: ∫ a x n d x = a x n + 1 n + 1 + C E x a m p l e 1 ∫ 2 x 3 d x = 2 x 4 4 + C = x 4 2 + C E x a m p l e 2 ∫ 2 3 x 5 d x = ∫ 2 3 x − 5 d x = 2 3 ( x − 4 − 4 ) + C = 2 3 ( x − 4 − 4 ) + C = x − 4 − 6 + C Type 3: ∫ ( u+v )dx= ∫ udx± ∫ vdx u and v are functions in x Example 1 ∫ 3 x 2 +2xdx= ∫ 3 x 2 dx+ ∫ 2xdx = 3 x 3 3 + 2 x 2 2 +C = 3 x 3 3 + 2 x 2 2 +C = x 3 + x 2 +C E x a m p l e 2 ∫ ( x + 2 ) ( 3 x + 1 ) d x = ∫ 3 x 2 + 7 x + 2 d x = ∫ 3 x 2 d x + ∫ 7 x d x + ∫ 2 d x = 3 x 3 3 + 7 x 2 2 + 2 x + C = x 3 + 7 x 2 2 + 2 x + C E x a m p l e 3 ∫ 3 x 3 + x 2 − x x d x = ∫ 3 x 2 + x − 1 d x = ∫ 3 x 2 d x + ∫ x d x − ∫ 1 d x = 3 x 3 3 + x 2 2 − x + C = x 3 + x 2 2 − x + C