3.1 Integration as the Inverse of Differentiation, Integration of axn and integration of the Functions of the Sum/Difference of Algebraic Terms
Type 1:
∫adx=ax+CExample∫2dx=2x+C
Type 1:
Type 2:
∫axndx=axn+1n+1+CExample1∫2x3dx=2x44+C=x42+CExample2∫23x5dx=∫23x−5dx=23(x−4−4)+C=23(x−4−4)+C=x−4−6+C
∫axndx=axn+1n+1+CExample1∫2x3dx=2x44+C=x42+CExample2∫23x5dx=∫23x−5dx=23(x−4−4)+C=23(x−4−4)+C=x−4−6+C
Type 3:
∫(u+v)dx=∫udx±∫vdxu and v are functions in xExample 1∫3x2+2xdx=∫3x2dx+∫2xdx=3x33+2x22+C=3x33+2x22+C=x3+x2+C
∫(u+v)dx=∫udx±∫vdxu and v are functions in xExample 1∫3x2+2xdx=∫3x2dx+∫2xdx=3x33+2x22+C=3x33+2x22+C=x3+x2+C
Example2∫(x+2)(3x+1)dx=∫3x2+7x+2dx=∫3x2dx+∫7xdx+∫2dx=3x33+7x22+2x+C=x3+7x22+2x+C
Example3∫3x3+x2−xxdx=∫3x2+x−1dx=∫3x2dx+∫xdx−∫1dx=3x33+x22−x+C=x3+x22−x+C