(G) Sum to Infinity of Geometric Progressions (Part 1)

1.4.4 Sum to Infinity of Geometric Progressions

(G) Sum to Infinity of Geometric Progressions

S = a 1 r , 1 < r < 1

a = first term
r = common ratio
S∞ = sum to infinity

Example:
Find the sum to infinity of each of the following geometric progressions.
(a) 8, 4, 2, ...
(b) 2 3 , 2 9 , 2 27 , .....   
(c) 3, 1, , ….

Solution:
(a)
8, 4, 2, ….
a = 2, r = 4/8 = ½
S∞ = 8 + 4 + 2 + 0.5 + 0.25 + 0.125 + 0.0625 + 0.03125 + …..
S = a 1 r = 2 1 1 2 = 4

(b)
2 3 , 2 9 , 2 27 , ..... a = 2 3 , r = 2 / 9 2 / 3 = 1 3 S = a 1 r S = 2 3 1 1 3 = 1

(c)
3 , 1 , 1 3 , ..... a = 3 , r = 1 3 S = a 1 r S = 3 1 1 3 = 3 2 / 3 = 9 2