Question 1:
Solution:
(a)
dydx=5x−5x2At turning point(m,9),dydx=0.5m−5m2=05m2=5mm3=1m=1
(b)
dydx=5x−5x2=5x−5x−2d2ydx2=5+10x3When x=1, d2ydx2=15 (> 0)Thus, (1,9) is a minimum point.
(c)
y=∫(5x−5x−2) dxy=5x22+5x+cAt turning point (1,9), x=1 and y=9.9=5(1)22+51+cc=32Equation of the curve: y=5x22+5x+32
A curve with gradient function
5x−5x2
has a turning point at (m, 9).
(a) Find the value of m.
(b) Determine whether the turning point is a maximum or a minimum point.
(c) Find the equation of the curve.
(c) Find the equation of the curve.
(a)
dydx=5x−5x2At turning point(m,9),dydx=0.5m−5m2=05m2=5mm3=1m=1
(b)
dydx=5x−5x2=5x−5x−2d2ydx2=5+10x3When x=1, d2ydx2=15 (> 0)Thus, (1,9) is a minimum point.
(c)
y=∫(5x−5x−2) dxy=5x22+5x+cAt turning point (1,9), x=1 and y=9.9=5(1)22+51+cc=32Equation of the curve: y=5x22+5x+32
Question 2:
Solution:
(a)
A curve has a gradient function kx2– 7x, where k is a constant. The tangent to the curve at the point (1, 3 ) is parallel to the straight line y + x– 4 = 0.
Find
(a) the value of k,
(b) the equation of the curve.
(a)
y + x – 4 = 0
y = – x + 4
m = –1
f ’(x) = kx² – 7x
Given tangent to the curve at the point (1, 3) parallel to the straight line
k (1)² – 7 (1) = –1
k – 7 = –1
k = 6
(b)
f'