Question 1:
Solution:
BD = 6.013 cm
(c)
Using sine rule,
(d)
Area of quadrilateral ABCD
The diagram shows a quadrilateral ABCD. The area of triangle BCD is 12 cm2 and ∠BCD is acute. Calculate
(a) ∠BCD,
(b) the length, in cm, of BD,
(c) ∠ABD,
(d) the area, in cm2, quadrilateral ABCD.
Solution:
(a) Given area of triangle BCD = 12 cm2
½ (BC)(CD) sin C = 12
½ (7) (4) sin C = 12
14 sin C = 12
sin C = 12/14 = 0.8571
C = 59o
∠BCD = 59o
(b)
Using cosine rule,
Using cosine rule,
BD2 = BC2 + CD2 – 2 (7)(4) cos 59o
BD2 = 72+ 42 – 2 (7)(4) cos 59o
BD2 = 65 – 28.84
BD2 = 36.16
BD = 36.16 BD = 6.013 cm
(c)
Using sine rule,
(d)
Area of quadrilateral ABCD
= Area of triangle ABD + Area of triangle BCD
= ½ (AB)(BD) sin B + 12 cm
= ½ (10) (6.013) sin 124.82 + 12
= 24.68 + 12
= 36.68 cm²