Short Question 11 – 14 Posted on April 22, 2020 by user Question 11: Prove the identity cos 2 x 1−sinx =1+sinxSolution: LHS = cos 2 x 1−sinx = 1− sin 2 x 1−sinx ← sin 2 x+ cos 2 x=1 = ( 1+sinx )( 1−sinx ) 1−sinx =1+sinx =RHS ∴Proven Question 12: Prove the identity sin 2 x− cos 2 x= tan 2 x−1 tan 2 x+1 Solution: RHS = tan 2 x−1 tan 2 x+1 = sin 2 x cos 2 x −1 sin 2 x cos 2 x +1 ← tanx= sinx cosx = sin 2 x− cos 2 x cos 2 x sin 2 x+ cos 2 x cos 2 x = sin 2 x− cos 2 x sin 2 x+ cos 2 x = sin 2 x− cos 2 x← sin 2 x+ cos 2 x=1 =LHS ∴Proven Question 13: Prove the identity tan 2 θ− sin 2 θ= tan 2 θ sin 2 θ Solution: LHS = tan 2 θ− sin 2 θ = sin 2 θ cos 2 θ − sin 2 θ = sin 2 θ− sin 2 θ cos 2 θ cos 2 θ = sin 2 θ( 1− cos 2 θ ) cos 2 θ = sin 2 θ sin 2 θ cos 2 θ =( sin 2 θ cos 2 θ )( sin 2 θ ) = tan 2 θ sin 2 θ =RHS ∴Proven Question 14: Prove the identity cosec 2 θ ( sec 2 θ− tan 2 θ )−1= cot 2 θ Solution: LHS = cosec 2 θ ( sec 2 θ− tan 2 θ )−1 = cosec 2 θ ( 1 )−1← tan 2 θ+1= sec 2 θ sec 2 θ− tan 2 θ=1 = cosec 2 θ−1 = cot 2 θ← 1+ cot 2 θ=cose c 2 θ cose c 2 θ−1= cot 2 θ =RHS ∴Proven