Short Question 8 – 10 Posted on April 22, 2020 by user Question 8: Given y= 5x x 2 +1 and dy dx =g( x ), find the value of ∫ 0 3 2g( x )dx. Solution: Since dy dx =g( x ), thus y= ∫ g( x ) dx ∫ 0 3 2g( x )dx=2 ∫ 0 3 g( x )dx =2 [ y ] 0 3 =2 [ 5x x 2 +1 ] 0 3 =2[ 5( 3 ) 3 2 +1 −0 ] =2( 15 10 ) =3 Question 9: Find ∫ 5 k ( x+1 )dx, in terms of k. Solution: ∫ 5 k ( x+1 )dx=[ x 2 2 +x ] 5 k =( k 2 2 +k )−( 5 2 2 +5 ) = k 2 +2k 2 − 35 2 = k 2 +2k−35 2 Question 10: Given that= ∫ 2 5 g(x)dx=−2 . Find (a) the value of ∫ 5 2 g(x)dx, (b) the value of m if ∫ 2 5 [ g(x)+m( x ) ]dx=19 Solution: (a) ∫ 5 2 g(x)dx= − ∫ 2 5 g(x)dx =−( −2 ) =2 (b) ∫ 2 5 [ g(x)+m( x ) ]dx=19 ∫ 2 5 g(x)dx+m ∫ 2 5 xdx=19 −2+m [ x 2 2 ] 2 5 =19 m 2 [ x 2 ] 2 5 =21 m 2 [ 25−4 ]=21 21m=42 m=2