Short Question 11 – 13


Question 11:
Given 32g(x)dx=4, and 32h(x)dx=9, find the value of(a) 325g(x)dx,(b) m if 32[g(x)+3h(x)+4m]dx=12

Solution:
(a)
325g(x)dx=532g(x)dx                 =5×4                 =20

(b)
32[g(x)+3h(x)+4m]dx=1232g(x)dx+332h(x)dx+324mdx=124+3(9)+4m[x]32=12       4m[3(2)]=19                      20m=19                          m=1920



Question 12:
(a) Find the value of 11(3x+1)3dx.(b) Evaluate 4312x4 dx.

Solution:
a) 11(3x+1)3dx=[(3x+1)44(3)]11                           =[(3x+1)412]11                           =112[44(2)4]                           =112(25616)                           =20

(b) 4312x4 dx=431(2x4)12 dx                            =43(2x4)12 dx                            =[(2x4)12+112(2)]43                            =[2x4]43                            =[2(4)42(3)4]                            =22



Question 13:
Given that y=x22x1, show thatdydx=2x(x1)(2x1)2. Hence, evaluate 22x(x1)4(2x1)2 dx.

Solution:
y=x22x1dydx=(2x1)(2x)x(2)(2x1)2    =4x22x2x2(2x1)2    =2x22x(2x1)2    =2x(x1)(2x1)2 (shown)222x(x1)(2x1)2 dx=[x22x1]2218222x(x1)(2x1)2 dx=18[x22x1]221422x(x1)(2x1)2 dx=18[(222(2)1)((2)22(2)1)]                           =18[(43)(45)]                           =18(3215)                           =415