Short Question 11 – 13


Question 11:
Given  2 3 g(x)dx=4 , and  2 3 h(x)dx=9 , find the value of (a)  2 3 5g(x)dx, (b) m if  2 3 [ g(x)+3h( x )+4m ]dx=12

Solution:
(a)
2 3 5g(x)dx=5 2 3 g(x)dx                  =5×4                  =20

(b)
2 3 [ g(x)+3h( x )+4m ]dx=12 2 3 g(x)dx+3 2 3 h( x )dx+ 2 3 4mdx=12 4+3( 9 )+4m [ x ] 2 3 =12        4m[ 3( 2 ) ]=19                       20m=19                           m= 19 20



Question 12:
(a) Find the value of  1 1 ( 3x+1 ) 3 dx. (b) Evaluate  3 4 1 2x4  dx.

Solution:
a)  1 1 ( 3x+1 ) 3 dx=[ ( 3x+1 ) 4 4( 3 ) ] 1 1                            = [ ( 3x+1 ) 4 12 ] 1 1                            = 1 12 [ 4 4 ( 2 ) 4 ]                            = 1 12 ( 25616 )                            =20

(b)  3 4 1 2x4  dx= 3 4 1 ( 2x4 ) 1 2  dx                             = 3 4 ( 2x4 ) 1 2  dx                             = [ ( 2x4 ) 1 2 +1 1 2 ( 2 ) ] 3 4                             = [ 2x4 ] 3 4                             =[ 2( 4 )4 2( 3 )4 ]                             =2 2



Question 13:
Given that y= x 2 2x1 , show that dy dx = 2x( x1 ) ( 2x1 ) 2 . Hence, evaluate  2 2 x( x1 ) 4 ( 2x1 ) 2  dx .

Solution:
y= x 2 2x1 dy dx = ( 2x1 )( 2x )x( 2 ) ( 2x1 ) 2     = 4 x 2 2x2 x 2 ( 2x1 ) 2     = 2 x 2 2x ( 2x1 ) 2     = 2x( x1 ) ( 2x1 ) 2  ( shown ) 2 2 2x( x1 ) ( 2x1 ) 2  dx = [ x 2 2x1 ] 2 2 1 8 2 2 2x( x1 ) ( 2x1 ) 2  dx = 1 8 [ x 2 2x1 ] 2 2 1 4 2 2 x( x1 ) ( 2x1 ) 2  dx = 1 8 [ ( 2 2 2( 2 )1 )( ( 2 ) 2 2( 2 )1 ) ]                            = 1 8 [ ( 4 3 )( 4 5 ) ]                            = 1 8 ( 32 15 )                            = 4 15