Short Question 11 – 13 Posted on April 22, 2020 by user Question 11: Given ∫ −2 3 g(x)dx=4 , and ∫ −2 3 h(x)dx=9 , find the value of (a) ∫ −2 3 5g(x)dx, (b) m if ∫ −2 3 [ g(x)+3h( x )+4m ]dx=12 Solution: (a) ∫ −2 3 5g(x)dx=5 ∫ −2 3 g(x)dx =5×4 =20 (b) ∫ −2 3 [ g(x)+3h( x )+4m ]dx=12 ∫ −2 3 g(x)dx+3 ∫ −2 3 h( x )dx+ ∫ −2 3 4mdx=12 4+3( 9 )+4m [ x ] −2 3 =12 4m[ 3−( −2 ) ]=−19 20m=−19 m=− 19 20 Question 12: (a) Find the value of ∫ −1 1 ( 3x+1 ) 3 dx. (b) Evaluate ∫ 3 4 1 2x−4 dx. Solution: a) ∫ −1 1 ( 3x+1 ) 3 dx=[ ( 3x+1 ) 4 4( 3 ) ] −1 1 = [ ( 3x+1 ) 4 12 ] −1 1 = 1 12 [ 4 4 − ( −2 ) 4 ] = 1 12 ( 256−16 ) =20 (b) ∫ 3 4 1 2x−4 dx= ∫ 3 4 1 ( 2x−4 ) 1 2 dx = ∫ 3 4 ( 2x−4 ) − 1 2 dx = [ ( 2x−4 ) − 1 2 +1 1 2 ( 2 ) ] 3 4 = [ 2x−4 ] 3 4 =[ 2( 4 )−4 − 2( 3 )−4 ] =2− 2 Question 13: Given that y= x 2 2x−1 , show that dy dx = 2x( x−1 ) ( 2x−1 ) 2 . Hence, evaluate ∫ −2 2 x( x−1 ) 4 ( 2x−1 ) 2 dx . Solution: y= x 2 2x−1 dy dx = ( 2x−1 )( 2x )−x( 2 ) ( 2x−1 ) 2 = 4 x 2 −2x−2 x 2 ( 2x−1 ) 2 = 2 x 2 −2x ( 2x−1 ) 2 = 2x( x−1 ) ( 2x−1 ) 2 ( shown ) ∫ −2 2 2x( x−1 ) ( 2x−1 ) 2 dx = [ x 2 2x−1 ] −2 2 1 8 ∫ −2 2 2x( x−1 ) ( 2x−1 ) 2 dx = 1 8 [ x 2 2x−1 ] −2 2 1 4 ∫ −2 2 x( x−1 ) ( 2x−1 ) 2 dx = 1 8 [ ( 2 2 2( 2 )−1 )−( ( −2 ) 2 2( −2 )−1 ) ] = 1 8 [ ( 4 3 )−( 4 −5 ) ] = 1 8 ( 32 15 ) = 4 15