Short Question 2 – 4 Posted on April 22, 2020 by user Question 2: Given that Given that ∫ 4 ( 1 + x ) 4 d x = m ( 1 + x ) n + c , find the values of m and n. Solution: ∫ 4 ( 1 + x ) 4 d x = m ( 1 + x ) n + c ∫ 4 ( 1 + x ) − 4 d x = m ( 1 + x ) n + c 4 ( 1 + x ) − 3 − 3 ( 1 ) + c = m ( 1 + x ) n + c − 4 3 ( 1 + x ) − 3 + c = m ( 1 + x ) n + c m = − 4 3 , n = − 3 Question 3: Given ∫ −1 2 2g(x)dx=4 , and ∫ −1 2 [ mx+3g( x ) ]dx =15. Find the value of constant m. Solution: ∫ − 1 2 [ m x + 3 g ( x ) ] d x = 15 ∫ − 1 2 m x d x + ∫ − 1 2 3 g ( x ) d x = 15 [ m x 2 2 ] − 1 2 + 3 ∫ − 1 2 g ( x ) d x = 15 [ m ( 2 ) 2 2 − m ( − 1 ) 2 2 ] + 3 2 ∫ − 1 2 2 g ( x ) d x = 15 2 m − 1 2 m + 3 2 ( 4 ) = 15 ← given ∫ − 1 2 2 g ( x ) d x = 4 3 2 m + 6 = 15 3 2 m = 9 m = 9 × 2 3 m = 6 Question 4: Given d d x ( 2 x 3 − x ) = g ( x ) , find ∫ 1 2 g ( x ) d x . Solution: Given d d x ( 2 x 3 − x ) = g ( x ) ∫ g ( x ) d x = 2 x 3 − x Thus, ∫ 1 2 g ( x ) d x = [ 2 x 3 − x ] 1 2 = 2 ( 2 ) 3 − 2 − 2 ( 1 ) 3 − 1 = 4 − 1 = 3