Short Question 6 & 7


Question 6:
The points P, Q and R are collinear. It is given that   PQ=4a˜2b˜  and   QR=3a˜+(1+k)b˜ , where k is a constant. Find
(a)    the value of k,
(b)    the ratio of PQ : QR.

Solution:
(a)
Note: If P, Q and R are collinear,PQ=mQR4a˜2b˜=m[3a˜+(1+k)b˜]4a˜2b˜=3ma˜+m(1+k)b˜Comparing vector:a˜: 4=3m        m=43b˜: 2=m(1+k)2=43(1+k)1+k=64k=321k=52

(b)
PQ=mQRPQ=43QRPQQR=43



Question 7:
Given that x ˜ = 3 i ˜ + m j ˜ and   y ˜ = 4 i ˜ 3 j ˜ , find the values of m if the vector   x ˜    is parallel to the vector y ˜ .

Solution:
If vector  x ˜  is parallel to vector  y ˜ x ˜ =h y ˜ ( 3 i ˜ +m j ˜ )=h( 4 i ˜ 3 j ˜ ) 3 i ˜ +m j ˜ =4h i ˜ 3h j ˜ Comparing vector: i ˜ :  3=4h         h= 3 4 j ˜ :  m=3h         m=3( 3 4 )= 9 4