Short Question 7 & 8


Question 7:
It is given that   sin A = 5 13 and cos B = 4 5 , where A is an obtuse angle and B is an acute angle.
Find
(a) tan A
(b) sin (A + B)
(c) cos (A B
 
Solution:
(a)
tan A = 5 12


(b)
sin ( A + B ) = sin A cos B + cos A sin B sin ( A + B ) = ( 5 13 ) ( 4 5 ) + ( 12 13 ) ( 3 5 ) cos A = 12 13 sin B = 3 5 sin ( A + B ) = 4 13 36 65 sin ( A + B ) = 16 65


(c)
cos ( A B ) = cos A cos B + sin A sin B cos ( A B ) = ( 12 13 ) ( 4 5 ) + ( 5 13 ) ( 3 5 ) cos ( A B ) = 33 65



Question 8:
If sin A = p, and 90° < A < 180°, express in terms of p
(a) tan A
(b) cos A
(c) sin 2A

Solution:
Using Pythagoras Theorem, Adjacent side = 1 2 p 2 = 1 p 2


(a)

tan A = p 1 p 2 tan is negative at second quadrant


(b)
cos A = 1 p 2 cos is negative at second quadrant


(c)
sin A = 2 sin A cos A sin A = 2 ( p ) ( 1 p 2 ) sin A = 2 p 1 p 2