Short Questions (Question 11 – 13) Posted on April 22, 2020 by user Question 11: Given that the graph of function f ( x ) = h x 3 + k x 2 has a gradient function f ' ( x ) = 12 x 2 − 258 x 3 such that h and k are constants. Find the values of h and k. Solution: f ( x ) = h x 3 + k x 2 = h x 3 + k x − 2 f ' ( x ) = 3 h x 2 − 2 k x − 3 f ' ( x ) = 3 h x 2 − 2 k x 3 But it is given that f ' ( x ) = 12 x 2 − 258 x 3 Hence, by comparison, 3 h = 12 and 2 k = 258 h = 4 k = 129 Question 12: Given that y = x 2 x + 3 , show that d y d x = x 2 + 6 x ( x + 3 ) 2 Find d 2 y d x 2 in the simplest form . Solution: y = x 2 x + 3 d y d x = ( x + 3 ) ( 2 x ) − x 2 .1 ( x + 3 ) 2 = 2 x 2 + 6 x − x 2 ( x + 3 ) 2 d y d x = x 2 + 6 x ( x + 3 ) 2 (shown) d 2 y d x 2 = ( x + 3 ) 2 ( 2 x + 6 ) − ( x 2 + 6 x ) .2 ( x + 3 ) ( x + 3 ) 4 d 2 y d x 2 = ( x + 3 ) [ ( x + 3 ) ( 2 x + 6 ) − 2 ( x 2 + 6 x ) ] ( x + 3 ) 4 d 2 y d x 2 = [ 2 x 2 + 6 x + 6 x + 18 − 2 x 2 − 12 x ] ( x + 3 ) 3 d 2 y d x 2 = 18 ( x + 3 ) 3 Question 13: If y = x 2 + 4 x , show that x 2 d 2 y d x 2 − 2 x d y d x + 2 y = 0. Solution: y = x 2 + 4 x d y d x = 2 x + 4 d 2 y d x 2 = 2 x 2 d 2 y d x 2 − 2 x d y d x + 2 y = x 2 ( 2 ) − 2 x ( 2 x + 4 ) + 2 ( x 2 + 4 x ) = 2 x 2 − 4 x 2 − 8 x + 2 x 2 + 8 x = 0 (Shown)