5.1 Direct Variation (Part 2)


(C) Finding the value of a variable in a direct variation
1. When y varies directly as x and sufficient information is given, the value of y or x can be determined by using:

( a ) y = k x , or ( b ) y 1 x 1 = y 2 x 2

Example 2

Given that varies directly as x and y = 24 when x = 8, find
(a) The equation relating to x
(b) The value of when = 6
(c) The value of when = 36

Solution:


Method 1: Using y = kx

( a ) y x
y = kx
when y = 24, x = 8
24 = k (8)
k = 3
y = 3x

(b)
when x = 6,
y = 3 (6)
y = 18

(c)
when y = 36
36 = 3x
x =12


Method 2: Using y 1 x 1 = y 2 x 2

(a)
Let x1 = 8 and y1 = 24


y 1 x 1 = y 2 x 2 24 8 = y 2 x 2 3 1 = y 2 x 2 y 2 = 3 x 2 y = 3 x

(b)
Let x1 = 8 and y1 = 24 and x2= 6; find y2.


y 1 x 1 = y 2 x 2 24 8 = y 2 6 y 2 = 24 8 ( 6 ) y 2 = 18


(c)
Let x1 = 8 and y1 = 24 and y2= 36; find x2.


y 1 x 1 = y 2 x 2 24 8 = 36 x 2 24 x 2 = 36 × 8 x 2 = 12