Long Question 1


Question 1:


The above diagram shows triangle OAB. The straight line AP intersects the straight line OQ at R. It is given that OP= 1 4 OB, AQ= 1 4 AB,  OP =4 b ˜  and  OA =8 a ˜ .  

(a) Express in terms of   a ˜  and/ or  b ˜ :
( i ) A P (ii) O Q

(b)(i) Given that A R = h A P , state   A R  in terms of h   a ˜  and  b ˜ .
 (ii) Given that   R Q = k O Q , state  in terms of k,   a ˜  and  b ˜ .

(c) Using   A Q = A R + R Q ,   find the value of h and of k.

Solution
:

(a)(i)
A P = A O + O P A P = O A + O P A P = 8 a ˜ + 4 b ˜


(a)(ii)
O Q = O A + A Q O Q = 8 a ˜ + 1 4 A B O Q = 8 a ˜ + 1 4 ( A O + O B ) O Q = 8 a ˜ + 1 4 ( 8 a ˜ + 4 O P ) O Q = 8 a ˜ + 1 4 ( 8 a ˜ + 4 ( 4 b ˜ ) ) O Q = 8 a ˜ 2 a ˜ + 4 b ˜ O Q = 6 a ˜ + 4 b ˜


(b)(i)
A R = h A P A R = h ( 8 a ˜ + 4 b ˜ ) A R = 8 h a ˜ + 4 h b ˜


(b)(ii)
R Q = k O Q R Q = k ( 6 a ˜ + 4 b ˜ ) R Q = 6 k a ˜ + 4 k b ˜


(c)
A Q = A R + R Q A Q = 8 h a ˜ + 4 h b ˜ + ( 6 k a ˜ + 4 k b ˜ ) A O + O Q = 8 h a ˜ + 4 h b ˜ + 6 k a ˜ + 4 k b ˜ 8 a ˜ + 6 a ˜ + 4 b ˜ = 8 h a ˜ + 6 k a ˜ + 4 h b ˜ + 4 k b ˜ 2 a ˜ + 4 b ˜ = 8 h a ˜ + 6 k a ˜ + 4 h b ˜ + 4 k b ˜ 2 = 8 h + 6 k 1 = 4 h + 3 k ( 1 ) 4 = 4 h + 4 k 1 = h + k k = 1 h ( 2 ) Substitute (2) into (1), 1 = 4 h + 3 ( 1 h ) 1 = 4 h + 3 3 h 4 = 7 h h = 4 7 From (2), k = 1 4 7 = 3 7

Long Question 3


Question 3:
In diagram below, PQRS is a quadrilateral. PTS and TUR are straight lines.
 
 
It is given that PQ =20 x ˜ ,   PT =8 y ˜ ,   SR =25 x ˜ 24 y ˜ ,   PT = 1 4 PS   and   TU = 3 5 TR
(a) Express in terms of x ˜ and/or   y ˜ :
 (i)   Q S
 (ii) T R
(b) Show that  the points  Q, U and S  are collinear.
(c) If   | x ˜ | = 2  and | y ˜ | = 3, find   | Q S |


Solution:

(a)(i)
QS = QP + PS QS =20 x ˜ +32 y ˜ Given  PT = 1 4 PS PS =4 PT =4( 8 y ˜ )=32 y ˜


(a)(ii)
T R = T S + S R T R = 3 4 P S + 25 x ˜ 24 y ˜ T R = 3 4 ( 32 y ˜ ) + 25 x ˜ 24 y ˜ T R = 24 y ˜ + 25 x ˜ 24 y ˜ T R = 25 x ˜


(b)
QU = QP + PT + TU QU =20 x ˜ +8 y ˜ + 3 5 ( 25 x ˜ ) Given TU = 3 5 TR QU =20 x ˜ +8 y ˜ +15 x ˜ QU =5 x ˜ +8 y ˜ From (a)(i)  QS =20 x ˜ +32 y ˜ QS QU = 20 x ˜ +32 y ˜ 5 x ˜ +8 y ˜ QS QU = 4( 5 x ˜ +8 y ˜ ) ( 5 x ˜ +8 y ˜ ) QS QU =4 QS =4 QU  Q, U and S are collinear.


(c)









P S = 32 y ˜ | P S | = 32 | y ˜ | | P S | = 32 × 3 = 96 P Q = 20 x ˜ | P Q | = 20 | x ˜ | | P Q | = 20 × 2 = 40 | Q S | = 96 2 + 40 2 | Q S | = 104

Integration as the Inverse of Differentiation


3.4c Integration as the Inverse of Differentiation

Example:
Shows that  d dx [ 2x+5 x 2 3 ]= 2( x 2 +5x+3 ) ( x 2 3 ) 2 Hence, find the value of  0 2 ( x 2 +5x+3 ) ( x 2 3 ) 2  dx


Solution:
d dx [ 2x+5 x 2 3 ]= ( x 2 3 )( 2 )( 2x+5 )( 2x ) ( x 2 3 ) 2                   = 2 x 2 64 x 2 10x ( x 2 3 ) 2                   = 2 x 2 10x6 ( x 2 3 ) 2                   = 2( x 2 +5x+3 ) ( x 2 3 ) 2 0 2 2( x 2 +5x+3 ) ( x 2 3 ) 2  dx = [ 2x+5 x 2 3 ] 0 2 2 0 2 ( x 2 +5x+3 ) ( x 2 3 ) 2  dx = [ 2x+5 x 2 3 ] 0 2      0 2 ( x 2 +5x+3 ) ( x 2 3 ) 2  dx = 1 2 [ ( 2( 2 )+5 2 2 3 )( 2( 0 )+5 0 2 3 ) ]                                  = 1 2 [ 9( 5 3 ) ]                                  = 1 2 × 32 3                                  = 16 3                                  =5 1 3

3.6 Integration as the Summation of Volumes


3.6 Integration as the Summation of Volumes

(1).


The volume of the solid generated when the region enclosed by the curve y = f(x), the x-axis, the line x = and the line x = b is revolved through 360° about the x-axis is given by

V x = π a b y 2 d x



(2).


The volume of the solid generated when the region enclosed by the curve x = f(y), the y-axis, the line y = a and the line y = b is revolved through 360° about the y-axis is given by
V y = π a b x 2 d y

Long Question 1 & 2


Question 1:
A curve with gradient function 5 x 5 x 2  has a turning point at (m, 9).
(a) Find the value of m.
(b) Determine whether the turning point is a maximum or a minimum point.
(c) Find the equation of the curve.

Solution:
(a)
d y d x = 5 x 5 x 2 At turning point ( m , 9 ) , d y d x = 0. 5 m 5 m 2 = 0 5 m 2 = 5 m m 3 = 1 m = 1

(b)
dy dx =5x 5 x 2 =5x5 x 2 d 2 y d x 2 =5+ 10 x 3 When x=1,  d 2 y d x 2 =15 (> 0) Thus, ( 1,9 ) is a minimum point.

(c)
y= ( 5x5 x 2 )  dx y= 5 x 2 2 + 5 x +c At turning point ( 1,9 ), x=1 and y=9. 9= 5 ( 1 ) 2 2 + 5 1 +c c= 3 2 Equation of the curve: y= 5 x 2 2 + 5 x + 3 2




Question 2:
A curve has a gradient function kx2– 7x, where k is a constant. The tangent to the curve at the point (1, 3 ) is parallel to the straight line  y + x– 4 = 0.
Find
(a) the value of k,
(b) the equation of the curve.

Solution:
(a)
y + x – 4 = 0
y = – x + 4
m = –1

f ’(x) = kx² – 7x
Given tangent to the curve at the point (1, 3) parallel to the straight line
k (1)² – 7 (1) = –1
k – 7 = –1
k = 6

(b)
  f ' ( x ) = 6 x 2 7 x f ( x ) = ( 6 x 2 7 x ) d x f ( x ) = 6 x 3 3 7 x 2 2 + c 3 = 2 ( 1 ) 3 7 ( 1 ) 2 2 + c at point ( 1 , 3 ) c = 9 2 f ( x ) = 2 x 3 7 x 2 2 + 9 2

Long Question 5


Question 5:
In Diagram below, the straight line WY is normal to the curve   y = 1 2 x 2 + 1 at B (2, 4). The straight line BQ is parallel to the y–axis.


Find
(a) the value of t,
(b) the area of the shaded region,
(c) the volume generated, in terms of π, when the region bounded by the curve, the y–axis
  and the straight line y = 4 is revolved through 360° about the y-axis.

Solution:
(a)
y= 1 2 x 2 +1 Gradient of tangent,  dy dx =2( 1 2 x )=x At point B dy dx =2 Gradient of normal,  m 2 = 1 2 40 2t = 1 2 8=2+t t=10


(b)
Area of the shaded region =Area under the curve + Area of triangle BQY = 0 2 ( 1 2 x 2 +1 )  dx+ 1 2 ( 102 )( 4 ) = [ x 3 6 +x ] 0 2 +16 =[ 8 6 +2 ]0+16 =19 1 3  unit 2


(c)
At yaxis, x=0, y= 1 2 ( 0 )+1=1 y= 1 2 x 2 +1,  x 2 =2y2 Volume generated  π x 2 dy =π 1 4 ( 2y2 )  dy =π [ y 2 2y ] 1 4 =π[ ( 168 )( 12 ) ] =9π  unit 3

Short Question 1


Question 1:
Find the integral of each of the following . ( a ) ( 3 x 2 5 2 x 3 + 2 ) d x ( b ) x 2 ( x 5 + 2 x ) d x ( c ) 3 x 4 + 2 x x 3 d x ( d ) ( 7 + x ) ( 7 x ) x 4 d x ( e ) ( 5 x 1 ) 3 d x ( f ) 3 ( 4 x + 7 ) 8 d x


Solution:
(a)
( 3 x 2 5 2 x 3 + 2 ) d x = ( 3 x 2 5 x 3 2 + 2 ) d x = 3 x 1 + 5 x 2 4 + 2 x + c = 3 x + 5 4 x 2 + 2 x + c


(b)
x 2 ( x 5 + 2 x ) d x = ( x 7 + 2 x 3 ) d x = x 8 8 + 2 x 4 4 + c = x 8 8 + x 4 2 + c


(c)
3 x 4 + 2 x x 3 d x = ( 3 x 4 x 3 + 2 x x 3 ) d x = ( 3 x + 2 x 2 ) d x = 3 x 2 2 2 x + c


(d)
( 7 + x ) ( 7 x ) x 4 d x = ( 49 x 2 x 4 ) d x = ( 49 x 4 1 x 2 ) d x = ( 49 x 4 x 2 ) d x = 49 x 3 3 + 1 x + c = 49 3 x 3 + 1 x + c


(e)
( 5 x 1 ) 3 d x = ( 5 x 1 ) 4 ( 4 ) ( 5 ) + c = 1 20 ( 5 x 1 ) 4 + c


(f)
3 ( 4 x + 7 ) 8 d x = 3 ( 4 x + 7 ) 8 d x = 3 ( 4 x + 7 ) 7 ( 7 ) ( 4 ) + c = 3 28 ( 4 x + 7 ) 7 + c

Short Question 5 – 7


Question 5:
Given  ( 6 x 2 +1 )dx=m x 3 +x +c,  where m and c are constants, find (a) the value of m. (b) the value of c if  ( 6 x 2 +1 )dx=13 when x=1.

Solution:
(a)
( 6 x 2 +1 )dx=m x 3 +x +c 6 x 3 3 +x+c=m x 3 +x+c 2 x 3 +x+c=m x 3 +x+c Compare the both sides,  m=2

(b)

( 6 x 2 +1 )dx=13 when x=1. 2 ( 1 ) 3 +1+c=13            3+c=13                 c=10



Question 6:
It is given that  5 k g(x)dx=6 , and  5 k [ g( x )+2 ]dx =14, find the value of k.

Solution:
5 k [ g( x )+2 ]dx =14 5 k g( x )dx + 5 k 2dx =14                6+ [ 2x ] 5 k =14                 2( k5 )=8                      k5=4                           k=9



Question 7:
Given  k 2 (4x+7)dx=28 , calculate the possible value of k.

Solution:
k 2 (4x+7)dx=28 [ 2 x 2 +7x ] k 2 =28 8+14( 2 k 2 +7k )=28 222 k 2 7k=28 2 k 2 +7k+6=0 ( 2k+3 )( k+2 )=0 k= 3 2  or k=2

Short Question 8 – 10


Question 8:
Given y= 5x x 2 +1  and  dy dx =g( x ), find the value of  0 3 2g( x )dx.

Solution:
Since dy dx =g( x ), thus y= g( x ) dx 0 3 2g( x )dx=2 0 3 g( x )dx   =2 [ y ] 0 3   =2 [ 5x x 2 +1 ] 0 3   =2[ 5( 3 ) 3 2 +1 0 ]   =2( 15 10 )   =3



Question 9:
Find  5 k ( x+1 )dx, in terms of k.

Solution:
5 k ( x+1 )dx=[ x 2 2 +x ] 5 k   =( k 2 2 +k )( 5 2 2 +5 )   = k 2 +2k 2 35 2   = k 2 +2k35 2



Question 10:
Given that= 2 5 g(x)dx=2 . Find (a) the value of  5 2 g(x)dx, (b) the value of m if  2 5 [ g(x)+m( x ) ]dx=19

Solution:
(a)  5 2 g(x)dx= 2 5 g(x)dx                      =( 2 )                      =2

(b)  2 5 [ g(x)+m( x ) ]dx=19       2 5 g(x)dx+m 2 5 xdx=19               2+m [ x 2 2 ] 2 5 =19                        m 2 [ x 2 ] 2 5 =21                     m 2 [ 254 ]=21                             21m=42                                 m=2

Short Question 11 – 13


Question 11:
Given  2 3 g(x)dx=4 , and  2 3 h(x)dx=9 , find the value of (a)  2 3 5g(x)dx, (b) m if  2 3 [ g(x)+3h( x )+4m ]dx=12

Solution:
(a)
2 3 5g(x)dx=5 2 3 g(x)dx                  =5×4                  =20

(b)
2 3 [ g(x)+3h( x )+4m ]dx=12 2 3 g(x)dx+3 2 3 h( x )dx+ 2 3 4mdx=12 4+3( 9 )+4m [ x ] 2 3 =12        4m[ 3( 2 ) ]=19                       20m=19                           m= 19 20



Question 12:
(a) Find the value of  1 1 ( 3x+1 ) 3 dx. (b) Evaluate  3 4 1 2x4  dx.

Solution:
a)  1 1 ( 3x+1 ) 3 dx=[ ( 3x+1 ) 4 4( 3 ) ] 1 1                            = [ ( 3x+1 ) 4 12 ] 1 1                            = 1 12 [ 4 4 ( 2 ) 4 ]                            = 1 12 ( 25616 )                            =20

(b)  3 4 1 2x4  dx= 3 4 1 ( 2x4 ) 1 2  dx                             = 3 4 ( 2x4 ) 1 2  dx                             = [ ( 2x4 ) 1 2 +1 1 2 ( 2 ) ] 3 4                             = [ 2x4 ] 3 4                             =[ 2( 4 )4 2( 3 )4 ]                             =2 2



Question 13:
Given that y= x 2 2x1 , show that dy dx = 2x( x1 ) ( 2x1 ) 2 . Hence, evaluate  2 2 x( x1 ) 4 ( 2x1 ) 2  dx .

Solution:
y= x 2 2x1 dy dx = ( 2x1 )( 2x )x( 2 ) ( 2x1 ) 2     = 4 x 2 2x2 x 2 ( 2x1 ) 2     = 2 x 2 2x ( 2x1 ) 2     = 2x( x1 ) ( 2x1 ) 2  ( shown ) 2 2 2x( x1 ) ( 2x1 ) 2  dx = [ x 2 2x1 ] 2 2 1 8 2 2 2x( x1 ) ( 2x1 ) 2  dx = 1 8 [ x 2 2x1 ] 2 2 1 4 2 2 x( x1 ) ( 2x1 ) 2  dx = 1 8 [ ( 2 2 2( 2 )1 )( ( 2 ) 2 2( 2 )1 ) ]                            = 1 8 [ ( 4 3 )( 4 5 ) ]                            = 1 8 ( 32 15 )                            = 4 15