Long Question 3


Question 3:
The gradient function of a curve which passes through P(2, 14) is 6x² – 12x
Find
(a) the equation of the curve,
(b) the coordinates of the turning points of the curve and determine whether each of the turning points is a maximum or a minimum.

Solution:
(a)
Given gradient function of a curve dydx=6x212xThe equation of the curve,y=(6x212x) dxy=6x3312x22+cy=2x36x2+c14=2(2)36(2)2+c, at point P (2,14)14=8+cc=6y=2x36x26


(b)
dydx=6x212xAt turning points, dydx=06x212x=06x(x2)=0x=0x=2x=0,  y=2(0)36(0)26=6x=2,  y=2(2)36(2)26=14d2ydx2=12x12When x=0d2ydx2=12(0)12=12 <0(0,6) is a maximum point.When x=2d2ydx2=12(2)12=12 >0(2,14) is a minimum point.

3.5 Integration as the Summation of Areas

3.5 Integration as the Summation of Areas

(A) Area of the region between a Curve and the x-axis.



Area of the shaded region;  A=baydx


(B) Area of the region between a curve and the y-axis.


Area of the shaded region;  A=baxdy


(C) Area of the region between a curve and a straight line.


Area of the shaded region;  A=baf(x)dxbag(x)dx

3.2 Integration by Substitution

3.2 Integration by Substitution
It is given that (ax+b)ndx,n1.  


(A) Using the Substitution method,
Let u=ax+bThus, dudx=a   

Example 1:
( 3x+5 ) 3 dx. Let u=3x+5     du dx =3 dx= du 3 ( 3x+5 ) 3 dx = u 3 du 3    substitute 3x+5=u and dx= du 3 = 1 3 u 3 du = 1 3 ( u 4 4 )+c = 1 3 ( ( 3x+5 ) 4 4 )+c    substitute back  u=3x+5   = ( 3x+5 ) 4 12 +c


(B) Using Formula method

( a x + b ) n = ( a x + b ) n + 1 ( n + 1 ) a + c Hence, ( 3 x + 5 ) 3 d x = ( 3 x + 5 ) 4 4 ( 3 ) + c = ( 3 x + 5 ) 4 12 + c

Example 2 (Formula method):

  ( a x + b ) n = ( a x + b ) n + 1 ( n + 1 ) a + c Hence, ( 3 x + 5 ) 3 d x = ( 3 x + 5 ) 4 4 ( 3 ) + c = ( 3 x + 5 ) 4 12 + c

Basic Integration

3.1 Integration as the Inverse of Differentiation, Integration of axn and integration of the Functions of the Sum/Difference of Algebraic Terms

Type 1:

a d x = a x + C Example 2 d x = 2 x + C

Type 2:

a x n d x = a x n + 1 n + 1 + C E x a m p l e 1 2 x 3 d x = 2 x 4 4 + C = x 4 2 + C E x a m p l e 2 2 3 x 5 d x = 2 3 x 5 d x = 2 3 ( x 4 4 ) + C = 2 3 ( x 4 4 ) + C = x 4 6 + C


Type 3:

( u+v )dx= udx± vdx u and v are functions in x Example 1 3 x 2 +2xdx= 3 x 2 dx+ 2xdx = 3 x 3 3 + 2 x 2 2 +C = 3 x 3 3 + 2 x 2 2 +C = x 3 + x 2 +C


E x a m p l e 2 ( x + 2 ) ( 3 x + 1 ) d x = 3 x 2 + 7 x + 2 d x = 3 x 2 d x + 7 x d x + 2 d x = 3 x 3 3 + 7 x 2 2 + 2 x + C = x 3 + 7 x 2 2 + 2 x + C


E x a m p l e 3 3 x 3 + x 2 x x d x = 3 x 2 + x 1 d x = 3 x 2 d x + x d x 1 d x = 3 x 3 3 + x 2 2 x + C = x 3 + x 2 2 x + C
 

Finding Equation Of A Curve From Its Gradient Function


3.3 Finding Equation of a Curve from its Gradient Function


Example 1:
Find the equation of the curve that has the gradient function  d y d x = 2 x + 8 and passes through the point (2, 3).

Solution:
y = ( 2 x + 8 ) y = 2 x 2 2 + 8 x + C
y = x2 + 8x + C
3 = 22 +8(2) + C  (2, 3)
C = –17
Hence, the equation of the curve is
 y = x2 + 8x – 17



Example 2:
The gradient function of a curve is given by 2x – 4 and the curve has a minimum value of 3. Find the equation of the curve.

Solution:
At the point where a curve has a minimum value,  d y d x = 0
d y d x = 0  
2x – 4 = 0
x = 2

Therefore minimum point = (2, 3).

d y d x = 2 x 4 y = ( 2 x 4 ) d x y = 2 x 2 2 4 x + C y = x 2 4 x + C

When x = 2, y = 3.
3 = 22 – 4(2) + c
c = 7

Hence, the equation of the curve is
y = x2 – 4x + 7

Definite Integrals

3.4a Definite Integral of f(x) from x=a to x=b



Example:
Evaluate each of the following.
  (a) 1 0 ( 3 x 2 2 x + 5 ) d x (b) 0 2 ( 2 x + 1 ) 3 d x

Solution:
  (a) 1 0 ( 3 x 2 2 x + 5 ) d x = [ 3 x 3 3 2 x 2 2 + 5 x ] 1 0 = [ x 3 x 2 + 5 x ] 1 0 = 0 [ ( 1 ) 3 ( 1 ) 2 + 5 ( 1 ) ] = 0 ( 1 1 5 ) = 7 (b) 0 2 ( 2 x + 1 ) 3 d x = [ ( 2 x + 1 ) 4 4 ( 2 ) ] 0 2 = [ ( 2 x + 1 ) 4 8 ] 0 2 = [ ( 2 ( 2 ) + 1 ) 4 8 ] [ ( 2 ( 0 ) + 1 ) 4 8 ] = 625 8 1 8 = 78


Short Question 2 – 4


Question 2:
Given that  Given that 4 ( 1 + x ) 4 d x = m ( 1 + x ) n + c ,
find the values of m and n.

Solution:
4 ( 1 + x ) 4 d x = m ( 1 + x ) n + c 4 ( 1 + x ) 4 d x = m ( 1 + x ) n + c 4 ( 1 + x ) 3 3 ( 1 ) + c = m ( 1 + x ) n + c 4 3 ( 1 + x ) 3 + c = m ( 1 + x ) n + c m = 4 3 , n = 3



Question 3:
Given  1 2 2g(x)dx=4 , and  1 2 [ mx+3g( x ) ]dx =15. Find the value of constant m.

Solution:
1 2 [ m x + 3 g ( x ) ] d x = 15 1 2 m x d x + 1 2 3 g ( x ) d x = 15 [ m x 2 2 ] 1 2 + 3 1 2 g ( x ) d x = 15 [ m ( 2 ) 2 2 m ( 1 ) 2 2 ] + 3 2 1 2 2 g ( x ) d x = 15 2 m 1 2 m + 3 2 ( 4 ) = 15 given 1 2 2 g ( x ) d x = 4 3 2 m + 6 = 15 3 2 m = 9 m = 9 × 2 3 m = 6



Question 4:
Given d d x ( 2 x 3 x ) = g ( x ) , find 1 2 g ( x ) d x .

Solution:
Given d d x ( 2 x 3 x ) = g ( x ) g ( x ) d x = 2 x 3 x Thus, 1 2 g ( x ) d x = [ 2 x 3 x ] 1 2 = 2 ( 2 ) 3 2 2 ( 1 ) 3 1 = 4 1 = 3

Long Question 6


Question 6:
Diagram below shows part of the curve   y = 2 ( 3 x 2 ) 2  which passes through (1, 2).


(a) Find the equation of the tangent to the curve at the point B.
(b) A region is bounded by the curve, the x-axis and the straight lines x = 2 and x = 3.
(i) Find the area of the region.
(ii) The region is revolved through 360° about the x–axis. Find the volume generated, in terms of p.

Solution:
(a)
y = 2 ( 3 x 2 ) 2 = 2 ( 3 x 2 ) 2 d y d x = 4 ( 3 x 2 ) 3 ( 3 ) d y d x = 12 ( 3 x 2 ) 3 d y d x = 12 ( 3 ( 1 ) 2 ) 3 , x = 1 d y d x = 12 y 2 = 12 ( x 1 ) y 2 = 12 x + 12 y = 12 x + 14


(b)(i)

Area = 2 3 y d x = 2 3 2 ( 3 x 2 ) 2 d x = 2 3 2 ( 3 x 2 ) 2 d x = [ 2 ( 3 x 2 ) 1 1 ( 3 ) ] 2 3 = [ 2 3 ( 3 x 2 ) ] 2 3 = [ 2 3 [ 3 ( 3 ) 2 ] ] [ 2 3 [ 3 ( 2 ) 2 ] ] = 2 21 + 1 6 = 1 14 unit 2


(b)(ii)
Volume generated = π y 2 d x = π 2 3 4 ( 3 x 2 ) 4 d x = π 2 3 4 ( 3 x 2 ) 4 d x = π [ 4 ( 3 x 2 ) 3 3 ( 3 ) ] 2 3 = π [ 4 9 ( 3 x 2 ) 3 ] 2 3 = π [ 4 9 [ 3 ( 3 ) 2 ] 3 ] [ 4 9 [ 3 ( 2 ) 2 ] 3 ] = π ( 4 3087 + 4 576 ) = 31 5488 π unit 3

Gradient Of A Straight Line


(B) Gradient of a Straight Line
If the points A ( x 1 , y 1 )  and B ( x 2 , y 2 )   lie on the straight line y = m x + c , then gradient of ,the straight line
m = y 2 y 1 x 2 x 1 o r y 1 y 2 x 1 x 2


Steps To Draw The Line Of Best Fit

Steps to draw a line of Best Fit
(i) Select suitable scales for the x-axis and the y-axis, make sure the points plotted accurately and the graph produced is large enough on the graph paper,
(ii) Mark the points correctly,
(iii) Use a long and transparent ruler to draw the line of best fit.

Step 1 : Select the suitable scale on x and y axis 

(the graph produced must be more than 50% of the graph paper)
 

 
Step 2 : Mark the points correctly
 

 
Step 3 : Draw the Line of Best Fit
 
* Note
 -the line passes through four points 
-one point is above the line
-one point is below the line