Short Questions (Question 14 – 16)


Question 14:
Given y = x (6 – x), express y d 2 y d x 2 + x d y d x + 18 in terms of in the simplest form.

Hence, find the value of which satisfies the equation  y d 2 y d x 2 + x d y d x + 18 = 0

Solution:
y = x ( 6 x ) = 6 x x 2 d y d x = 6 2 x d 2 y d x 2 = 2 y d 2 y d x 2 + x d y d x + 18 = ( 6 x x 2 ) ( 2 ) + x ( 6 2 x ) + 18     = 12 x + 2 x 2 + 6 x 2 x 2 + 18     = 6 x + 18 y d 2 y d x 2 + x d y d x + 18 = 0    6 x + 18 = 0   x = 3



Question 15:
Find the coordinates of the point on the curve, y = (4x – 5)2 such that the gradient of the normal to the curve is 1 8 .

Solution:
y = (4x – 5)2
d y d x = 2(4x – 5).4 = 32x – 40

Given the gradient of the normal is 1/8, therefore the gradient of the tangent is –8.
d y d x = –8
32x – 40 = –8
32x = 32
x = 1
y = (4(1) – 5)2= 1

Hence, the coordinates of the point on the curve, y = (4x – 5)2 is (1, 1).



Question 16:
A curve has a gradient function of kx2 – 7x, where k is a constant. The tangent to the curve at the point (1, 4) is parallel to the straight line y + 2x–1 = 0. Find the value of k.

Solution:
Gradient function of kx2– 7x is parallel to the straight line y + 2x–1 = 0
d y d x = kx2– 7x

y + 2x –1 = 0, y = –2x + 1, gradient of the straight line = –2
Therefore kx2– 7x = –2

At the point (1, 4),
k(1)2 – 7(1) = –2
k – 7 = –2
k = 5

Short Questions (Question 11 – 13)


Question 11:
Given that the graph of function f ( x ) = h x 3 + k x 2  has a gradient function f ' ( x ) = 12 x 2 258 x 3 such that h and are constants. Find the values of and k.

Solution:
f ( x ) = h x 3 + k x 2 = h x 3 + k x 2 f ' ( x ) = 3 h x 2 2 k x 3 f ' ( x ) = 3 h x 2 2 k x 3 But it is given that  f ' ( x ) = 12 x 2 258 x 3 Hence, by comparison,  3 h = 12  and   2 k = 258 h = 4    k = 129



Question 12:
Given that  y = x 2 x + 3 , show that  d y d x = x 2 + 6 x ( x + 3 ) 2 Find  d 2 y d x 2  in the simplest form .

Solution:
y = x 2 x + 3 d y d x = ( x + 3 ) ( 2 x ) x 2 .1 ( x + 3 ) 2 = 2 x 2 + 6 x x 2 ( x + 3 ) 2 d y d x = x 2 + 6 x ( x + 3 ) 2  (shown) d 2 y d x 2 = ( x + 3 ) 2 ( 2 x + 6 ) ( x 2 + 6 x ) .2 ( x + 3 ) ( x + 3 ) 4 d 2 y d x 2 = ( x + 3 ) [ ( x + 3 ) ( 2 x + 6 ) 2 ( x 2 + 6 x ) ] ( x + 3 ) 4 d 2 y d x 2 = [ 2 x 2 + 6 x + 6 x + 18 2 x 2 12 x ] ( x + 3 ) 3 d 2 y d x 2 = 18 ( x + 3 ) 3



Question 13:
If  y = x 2 + 4 x , show that  x 2 d 2 y d x 2 2 x d y d x + 2 y = 0.

Solution:
y = x 2 + 4 x d y d x = 2 x + 4 d 2 y d x 2 = 2 x 2 d 2 y d x 2 2 x d y d x + 2 y = x 2 ( 2 ) 2 x ( 2 x + 4 ) + 2 ( x 2 + 4 x ) = 2 x 2 4 x 2 8 x + 2 x 2 + 8 x = 0  (Shown)

Short Questions (Question 5 – 7)


Question 5:
Given that f (x) = 3x2(4x 1)7, find f’(x). 

Solution:
f (x) = 3x2(4x 1)7
f’(x) = 3x2. 7(4x 1)6. 8x + (4x 1)7. 6x
f’(x) = 168x3 (4x 1)6 + 6x (4x 1)7
f’(x) = 6x (4x 1)6 [28x2+ (4x 1)]
f’(x) = 6x (4x 1)6 (32x 1)



Question 6:
Given that y = (1 + 4x)3(3x 1)4, find d y d x

Solution:
y = (1 + 4x)3(3x2 – 1)4
d y d x
= (1 + 4x)3. 4(3x2 – 1)3.6x + (3x2 – 1)4. 3(1 + 4x)2.4
= 24x (1 + 4x)3(3x2 – 1)3 + 12 (3x2 – 1)4(1 + 4x)2
= 12 (1 + 4x)2(3x2 – 1)3 [2x (1 + 4x) + (3x2 – 1)]
= 12 (1 + 4x)2(3x2 – 1)3 [2x + 8x2 + 3x2 – 1]
= 12 (1 + 4x)2(3x2 – 1)3 [11x2 + 2x  – 1]



Question 7:
Given that  f ( x ) = 3 x 4 x 2 1   ,  find  f ' ( x ) . .

Solution:
f ( x ) = 3 x 4 x 2 1 = 3 x ( 4 x 2 1 ) 1 2 f ' ( x ) = 3 x . 1 2 ( 4 x 2 1 ) 1 2 .8 x + ( 4 x 2 1 ) 1 2 .3 f ' ( x ) = 12 x 2 ( 4 x 2 1 ) 1 2 + 3 ( 4 x 2 1 ) 1 2 f ' ( x ) = 3 ( 4 x 2 1 ) 1 2 [ 4 x 2 + ( 4 x 2 1 ) ] f ' ( x ) = 3 ( 8 x 2 1 ) ( 4 x 2 1 )

Short Questions (Question 1 – 4)


Question 1:
Differentiate the expression 2x (4x2 + 2x – 5) with respect to x.

Solution:
2x (4x2 + 2x – 5) = 8x3 + 4x2– 10x
d d x (8x3 + 4x2 – 10x)
= 24x + 8x –10 



Question 2:
Given that  y = x 3 + 2 x 2 + 1 3 x ,  find  d y d x . .

Solution:
y = x 3 + 2 x 2 + 1 3 x y = x 3 3 x + 2 x 2 3 x + 1 3 x y = x 2 3 + 2 x 3 + 1 3 x 1 d y d x = 2 x 3 + 2 3 1 3 x 2 d y d x = 2 x 3 + 2 3 1 3 x 2



Question 3:
Given that  y = 3 5 x + 1 ,  find  d y d x

Solution:
y = 3 5 x + 1 = 3 ( 5 x + 1 ) 1 2 d y d x = 1 2 .3 ( 5 x + 1 ) 3 2 ( 5 ) d y d x = 15 2 [ ( 5 x + 1 ) 3 ] 1 2 d y d x = 15 2 ( 5 x + 1 ) 3



Question 4:
Given that  y = 3 5 u 5 , where u = 4+ 1. Find d y d x in terms of x.

Solution:
y = 3 5 u 5 ,   u = 4 x + 1 y = 3 5 ( 4 x + 1 ) 5 d y d x = 5. 3 5 ( 4 x + 1 ) 4 .4 d y d x = 12 ( 4 x + 1 ) 4

9.9 Small Changes and Approximations

[adinserter block="3"]
9.9 Small Changes and Approximations


If  δ x  is very small,  δ y δ x  will be a good approximation of  d y d x , ,

This is very useful information in determining an approximation of the change in one variable given the small change in the second variable. 


[adinserter block="3"]
Example:
Given that y = 3x2 + 2x – 4. Use differentiation to find the small change in y when x increases from 2 to 2.02.

Solution:
y = 3 x 2 + 2 x 4 d y d x = 6 x + 2

The small change in is denoted by δy while the small change in the second quantity that can be seen in the question is the x and is denoted by δx.

δy δx dy dx δy= dy dx ×δx δy=( 6x+2 )×( 2.022 )δx=new xoriginal x δy=[ 6( 2 )+2 ]×0.02  Substitute x with the original value of x, i.e2. δy=0.28

Related Rates of Change


(A) Related Rates of Change


1. If two variables and y are connected by the equation y = f(x)


Notes:
If x changes at the rate of 5 cms -1   d x d t = 5
Decreases/leaks/reduces Þ  NEGATIVES values!!!


Example 1 (Rate of change of y and x)
Two variables, and y are related by the equation   y = 4 x + 3 x . Given that y increases at a constant rate of 2 units per second, find the rate of change of x when x = 3.

Solution:
y = 4 x + 3 x = 4 x + 3 x 1 d y d x = 4 3 x 2 = 4 3 x 2 d y d t = d y d x × d x d t 2 = ( 4 3 x 2 ) × d x d t when  x = 3 2 = ( 4 3 3 2 ) × d x d t 2 = 11 3 × d x d t d x d t = 6 11  unit  s 1


(B) Rates of Change of Volume, Area, Radius, Height and Length




(C) Rate of Change of Any Combination of Two Variables



9.7 Second-Order Differentiation, Turning Points, Maximum and Minimum Points

(A) Second-Order Differentiation

1. When a function y = x3 + x2 – 3x + 6 is differentiated with respect to x, the derivative  d y d x = 3 x 2 + 2 x 3

2. The second function   d y d x can be differentiated again with respect to x. This is called the second derivative of y with respect to and can be written as d 2 y d x 2 .

3. Take note that   d 2 y d x 2 ( d y d x ) 2 .

For example,
If y = 4x3 – 7x2 + 5x – 1,

The first derivative   d y d x = 12 x 2 14 x + 5

The second derivative    d 2 y d x 2 = 24 x 14

(B) Turning Points, Maximum and Minimum Points



(a) At Turning Points A and B,




(b) At Maximum Point A



(c) At Minimum Point B,




9.6 Gradients of Tangents, Equations of Tangent and Normal

9.6 Gradients of Tangents, Equations of Tangents and Normals



If A(x1, y1) is a point on a line y = f(x), the gradient of the line (for a straight line) or the gradient of the tangent of the line (for a curve) is the value of d y d x when x = x1.

(A) Gradient of tangent at A(x1, y1):




(B) Equation of tangent:




(C) Gradient of normal at A(x1, y1):






(D) Equation of normal :  




Example 1 (Find the Equation of Tangent)
Given that y = 4 ( 3 x 1 ) 2 . Find the equation of the tangent at the point (1, 1).

Solution:
y = 4 ( 3 x 1 ) 2 = 4 ( 3 x 1 ) 2 d y d x = 2.4 ( 3 x 1 ) 3 .3 d y d x = 24 ( 3 x 1 ) 3 At point  ( 1 ,  1 ) ,   d y d x = 24 [ 3 ( 1 ) 1 ] 3 = 24 8 = 3 Equation of tangent at point  ( 1 ,  1 )  is, y 1 = 3 ( x 1 ) y 1 = 3 x + 3 y = 3 x + 4


Example 2 (Find the Equation of Normal)
Find the gradient of the curve y = 7 3 x + 4 at the point (-1, 7). Hence, find the equation of the normal to the curve at this point.

Solution:
y = 7 3 x + 4 = 7 ( 3 x + 4 ) 1 d y d x = 7 ( 3 x + 4 ) 2 .3 d y d x = 21 ( 3 x + 4 ) 2 At point  ( 1 ,   7 ) ,   d y d x = 21 [ 3 ( 1 ) + 4 ] 2 = 21 Gradient of the normal  = 1 21 Equation of the normal is y y 1 = m ( x x 1 ) y 7 = 1 21 ( x ( 1 ) ) 21 y 147 = x + 1 21 y x 148 = 0

9.5 First Derivatives of Composite Function


(A) Differentiate Composite Function using Chain Rule


Example:
Differentiate y = (x2– 1)8 .

Solution:



(B) Differentiate Composite Function using Alternative Method
   - Easy Version

Example:
Differentiate y = (x2 – 1)8 .

Solution:
y = ( x 2 1 ) 8 d y d x = 8 ( x 2 1 ) 7 d d x ( x 2 1 ) d y d x = 8 ( x 2 1 ) 7 ( 2 x ) d y d x = 16 x ( x 2 1 ) 7


Practice 1:
Given that  y = 1 3 x 7 ,  find  d y d x

Solution:
y = 1 3 x 7 = ( 3 x 7 ) 1 d y d x = 1 ( 3 x 7 ) 2 .3 d y d x = 3 ( 3 x 7 ) 2


Practice 2:
Given that  y = 2 x 2 5 x + 1 ,  find  d y d x

Solution:
y = 2 x 2 5 x + 1 = ( 2 x 2 5 x + 1 ) 1 2 d y d x = 1 2 ( 2 x 2 5 x + 1 ) 1 2 ( 4 x 5 ) d y d x = 4 x 5 2 2 x 2 5 x + 1

9.4 First Derivatives of the Quotient of Two Polynomials

Find the Derivatives of a Quotient using Quotient Rule

Method 1: The Quotient Rule

Example:

 

Method 2: (Differentiate Directly)

Example:

Given that y = x 2 2 x + 1 , find d y d x  

Solution:

y = x 2 2 x + 1 d y d x = ( 2 x + 1 ) ( 2 x ) x 2 ( 2 ) ( 2 x + 1 ) 2 = 4 x 2 + 2 x 2 x 2 ( 2 x + 1 ) 2 = 2 x 2 + 2 x ( 2 x + 1 ) 2  

 

Practice 1:

  Given that y = 4 x 3 ( 5 x + 1 ) 3 , find d y d x


Solution:

  y = 4 x 3 ( 5 x + 1 ) 3 d y d x = ( 5 x + 1 ) 3 ( 12 x 2 ) 4 x 3 .3 ( 5 x + 1 ) 2 .5 [ ( 5 x + 1 ) 3 ] 2 = ( 5 x + 1 ) 3 ( 12 x 2 ) 60 x 3 ( 5 x + 1 ) 2 ( 5 x + 1 ) 6 = ( 12 x 2 ) ( 5 x + 1 ) 2 [ ( 5 x + 1 ) 5 x ] ( 5 x + 1 ) 6 = ( 12 x 2 ) ( 5 x + 1 ) 2 ( 1 ) ( 5 x + 1 ) 6 = 12 x 2 ( 5 x + 1 ) 4