5.3 Equations Involving Indices


METHOD:
  1. Comparison of indices or base
    1. If  the base are the same , when a x = a y , then x = y
    2. If  the index are the same , when a x = b x , then a = b

  2. Using common logarithm (If base and index are NOT the same)
a x = b lg a x = lg b x = lg b lg a


Example 1 (Index Equation - Equal base)
Solve each of the following.
(a) 16 x = 8
(b) 9 x .3 x 1 = 81
(c) 5 n + 1 = 1 125 n 1









Example 2 (Solving index equation simultaneously)
Solve the following simultaneous equations.

2 x .4 2 y = 8

3 x 9 y = 1 27



5.2b Change of Base of Logarithms

Change of Base of Logarithms

    log a b= log c b log c a          and       log a b= 1 log b a      

Example 1
:
Find the value of the following:
a. log 25 100
b. log 3 0.45

Answer:
(a)   log 25 100= log 10 100 log 10 25 = log 10 10 2 log 10 25 = 2 1.3979 =1.431 (b)   log 3 0.45= log 10 0.45 log 10 3 = 0.3468 0.4771 =0.727



Example 2
Find the value of the following.
(a) log 4 8
(b) log 125 5
(c) log 81 27
(d) log 16 64





5.2a Laws of Logarithms


5.2a Laws of Logarithms

  Law 1:   log a x y = log a x + log a y   Example:   log 5 25 x = log 5 25 + log 5 x   Beware!!   log a x + log a y log a ( x + y )   

  Law 2:   log a ( x y ) = log a x log a y      Example:   log 5 x 25 = log 5 x log 5 25   Beware!!   log a x y log a x log a y   

  Law 3:   log a x m = m log a x   Example:   log 5 y 5 = 5 log 5 y   Beware!!    ( log a x ) 2 2 log a x   


5.2 Logarithms

5.2 Logarithms

N = a x log a N = x log a N = x is called the logarithmic form and N = a x is the index or exponential form.



Note:
  1. The logarithm of a negative number is not defined.
  2. log in the calculator denotes log 10 or common logarithm.
  3. log 10 may be written as lg.
  4. If the base is other than 10, the base should be specified, e.g. log 3 81