5.3 Equations Involving Indices (Example 3)

Example 3 (Index Equation - Equal Base)
Solve each of the following.
(a) 27(813x)=1
(b) 81n+2=13n27n1
(c) 8x1=42x+3







5.3 Equations Involving Indices


METHOD:
  1. Comparison of indices or base
    1. If  the base are the same , when ax=ay , then x = y
    2. If  the index are the same , when ax=bx , then a = b

  2. Using common logarithm (If base and index are NOT the same)
ax=blgax=lgbx=lgblga


Example 1 (Index Equation - Equal base)
Solve each of the following.
(a) 16x=8
(b) 9x.3x1=81
(c) 5n+1=1125n1









Example 2 (Solving index equation simultaneously)
Solve the following simultaneous equations.

2x.42y=8

3x9y=127



5.2b Change of Base of Logarithms (Example 3 & 4)

Example 3
Given that logp3=h   and logp5=k  , express the following in term of h and or k.
(a) logp53

(b) log1575





Example 4
Given that log3x=b  , express logx9x in term of b.



5.2b Change of Base of Logarithms

Change of Base of Logarithms

   logab=logcblogca         and      logab=1logba     

Example 1
:
Find the value of the following:
a. log25100
b. log30.45

Answer:
(a)  log25100=log10100log1025=log10102log1025=21.3979=1.431(b)  log30.45=log100.45log103=0.34680.4771=0.727



Example 2
Find the value of the following.
(a) log48
(b) log1255
(c) log8127
(d) log1664





5.2a Laws of Logarithms (Example 3)

Example 3

Given that log74=0.712   and log75=0.827  , evaluate the following.
(a) log720
(b) log7114
(c) log70.8
(d) log728
(e) log7140
(f) log7100
(g) log70.25
(h) log73564










5.2a Laws of Logarithms (Example 2)

Example 2

Find the value of the following.
(a) log27+log212log221

(b) 3log105+2log102log105

(c) 2log103log103+log10313

(d) log33p+log33qlog3pq






5.2a Laws of Logarithms (Example 1)

Example 1

Express the following in term of logax   and logay  .
(a) loga3x
(b) logax5
(c) logay5
(d) logaxy3
(e) logax2y
(f) logaya2x3

Law of Logarithms







5.2a Laws of Logarithms


5.2a Laws of Logarithms

  Law 1:  logaxy=logax+logay  Example: log525x=log525+log5x  Beware!!  logax+logayloga(x+y)  

  Law 2:  loga(xy)=logaxlogay    Example: log5x25=log5xlog525  Beware!!  logaxylogaxlogay  

  Law 3:  logaxm=mlogax  Example: log5y5=5log5y  Beware!!  (logax)22logax  


5.2 Logarithms

5.2 Logarithms

N=axlogaN=x logaN=x is called the logarithmic form and N=ax is the index or exponential form.



Note:
  1. The logarithm of a negative number is not defined.
  2. log in the calculator denotes log10 or common logarithm.
  3. log10 may be written as lg.
  4. If the base is other than 10, the base should be specified, e.g. log381