4.10.3 Matriks, SPM Praktis (Soalan Panjang)


Soalan 5:
(a) Diberi  1 14 ( 2 s 4 t )( t 1 4 2 )=( 1 0 0 1 ), cari nilai s dan nilai t.
(b) Tulis persamaan linear serentak berikut dalam bentuk matriks:
3x – 2y = 5
9x + y = 1
Seterusnya, menggunakan kaedah matriks, hitung nilai x dan nilai y.

Penyelesaian:
(a) 1 14 ( 2 s 4 t )( t 1 4 2 )=( 1 0 0 1 ) 1 14 ( 2t+4s 2+2s 4t+4t 4+2t )=( 1 0 0 1 ) 2+2s 14 =0   2s=2      s=1 4+2t 14 =1 4+2t=14 2t=10 t=5

(b) ( 3 2 9 1 )( x y )=( 5 1 )   ( x y )= 1 21 ( 1 2 9 3 )( 5 1 )   ( x y )= 1 21 ( ( 1 )( 5 )+( 2 )( 1 ) ( 9 )( 5 )+( 3 )( 1 ) )   ( x y )= 1 21 ( 7 42 )   ( x y )=( 1 3 2 ) x= 1 3 ,  y=2


Soalan 6:
Diberi bahawa matriks P=( 6 3 5 2 ) dan matriks Q= 1 m ( 2 3 5 n )  dengan keadaan PQ=( 1 0 0 1 ).
(a) Cari nilai m dan nilai n.
(b) Tulis persamaan linear serentak berikut dalam bentuk matriks:
6x – 3y = –24
–5x + 2y = 18
Seterusnya, menggunakan kaedah matriks, hitung nilai x dan nilai y.

Penyelesaian:
(a) m=6( 2 )( 3 )( 5 )   =1215 m=3 n=6

(b) ( 6 3 5 2 )( x y )=( 24 18 )   ( x y )= 1 1215 ( 2 3 5 6 )( 24 18 )   ( x y )= 1 3 ( ( 2 )( 24 )+( 3 )( 18 ) ( 5 )( 24 )+( 6 )( 18 ) )   ( x y )= 1 3 ( 6 12 )   ( x y )=( 2 4 ) x=2,  y=4