4.10.5 Matriks, SPM Praktis (Soalan Panjang)


Soalan 9:
(a) Diberi  1 s ( 4 2 5 3 )( t 2 5 4 )=( 1 0 0 1 ), cari nilai s dan nilai t.

(b) Menggunakan kaedah matriks, hitung nilai x dan nilai y yang memuaskan persamaan matriks berikut:
( 4 2 5 3 )( x y )=( 1 2 )

Penyelesaian:
(a) 1 s ( t 2 5 4 )= ( 4 2 5 3 ) 1 = 1 ( 4 )( 3 )( 2 )( 5 ) ( 3 2 5 4 ) = 1 2 ( 3 2 5 4 ) s=2, t=3

(b) ( 4 2 5 3 )( x y )=( 1 2 )   ( x y )= 1 2 ( 3 2 5 4 )( 1 2 )   ( x y )= 1 2 ( ( 3 )( 1 )+( 2 )( 2 ) ( 5 )( 1 )+( 4 )( 2 ) )   ( x y )= 1 2 ( 1 3 )   ( x y )=( 1 2 3 2 ) x= 1 2 ,  y= 3 2


Soalan 10 (6 markah):
Diberi A=( 4    2 3    1 ), B=m( 1    n 3    4 ) dan I=( 1    0 0    1 ).
(a) Cari nilai m dan nilai n jika AB = I.
(b) Tulis persamaan linear serentak berikut dalam bentuk persamaan matriks:
4x – 2y = 3
3xy = 2
Seterusnya, menggunakan kaedah matriks, hitung nilai x dan nilai y.

Penyelesaian:
(a)
Jika AB=I, maka B= A 1 A 1 = 1 4( 1 )( 2 )( 3 ) ( 1    2 3    4 ) A 1 = 1 2 ( 1    2 3    4 ) Secara perbandingan: B= A 1 m( 1    n 3    4 )= 1 2 ( 1    2 3    4 ) m= 1 2  ; n=2


(b)

4x2y=3 3xy=2 ( 4    2 3    1 )( x y )=( 3 2 )                ( x y )= 1 2 ( 1    2 3    4 )( 3 2 )                ( x y )= 1 2 ( ( 1 )( 3 )+( 2 )( 2 ) ( 3 )( 3 )+( 4 )( 2 ) )                ( x y )= 1 2 (   1 1 )                ( x y )=(    1 2 1 2 ) x= 1 2  dan y= 1 2