1.6.3 Fungsi, SPM Praktis (Soalan Kertas 2)


Soalan 5:
Fungsi f ditakrifkan oleh f:x 1+x 1x ,x1.  Cari  f 2 , f 3 , f 4  dan seterusnya tulis fungsi bagi  f 51  dan  f 52 .

Penyelesaian:
f( x )= 1+x 1x ,x1 f 2 ( x )=f[ f( x ) ]=f( 1+x 1x )  = 1+( 1+x 1x ) 1( 1+x 1x ) = 1x+1+x 1x 1x1x 1x  = 2 2x = 1 x f 3 ( x )=f[ f 2 ( x ) ]=f( 1 x )  = 1+( 1 x ) 1( 1 x ) = x1 x x+1 x  = x1 x+1 f 4 ( x )=f[ f 3 ( x ) ]=f( x1 x+1 )   = 1+( x1 x+1 ) 1( x1 x+1 ) = x+1+x1 x+1 x+1x+1 x+1   = 2x 2 =x f 5 ( x )=f[ f 4 ( x ) ]=f( x )= 1+x 1x ( berulang ) f 51 ( x )= f 3 [ f 48 ( x ) ]= f 3 ( x )  = x1 x+1 f 52 ( x )= f 4 [ f 48 ( x ) ]= f 4 ( x )=x



Soalan 6:
Dalam rajah di bawah, fungsi g memetakan set P kepada set Q dan fungsi h memetakan set Q kepada set R.



Cari
(a) dalam sebutan x, fungsi
(i) yang memetakan set Q kepada set P,
(ii) h(x).

(b) nilai x dengan keadaan gh(x) = 8x + 1.


Penyelesaian:
(a)(i)
g( x )=3x+2 Katakan  g 1 ( x )=y g( y )=x 3y+2=x         y= x2 3 g 1 ( x )= x2 3

(a)(ii)
hg( x )=12x+5 h( 3x+2 )=12x+5 g( x )=3x+2 Katakan u=3x+2    x= u2 3 h( u )=12( u2 3 )+5    =4u8+5    =4u3 h( x )=4x3

(b)
gh( x )=g( 4x3 )  =3( 4x3 )+2  =12x9+2  =12x7 12x7=8x+1    4x=8  x=2