2.6.5 Persamaan Kuadratik, SPM Praktis (Kertas 2)


Soalan 5:
Diberi α dan β adalah punca-punca persamaan kuadratik x (x – 3) = 2k – 4, dengan keadaan k ialah pemalar.
(a) Cari julat nilai jika αβ. (b) Diberi  α 2  dan  β 2  adalah punca-punca bagi satu lagi persamaan kuadratik      2 x 2 +tx4=0, dengan keadaan t ialah pemalar, cari nilai t dan nilai k.

Penyelesaian:
(a) x( x3 )=2k4 x 2 3x+42k=0 a=1, b=3, c=42k     b 2 4ac>0 ( 3 ) 2 4( 1 )( 42k )>0    916+8k>0 8k>7   k> 7 8

(b) Dari persamaan  x 2 3x+42k=0, α+β= b a          = 3 1          =3.............( 1 ) αβ= c a     = 42k 1     =42k.............( 2 ) Dari persamaan 2 x 2 +tx4=0, α 2 + β 2 = t 2 α+β=t.............( 3 ) α 2 × β 2 = 4 2 αβ=8.............( 4 ) Gantikan (1)=(3), 3=t t=3 Gantikan (2)=(4), 42k=8 4+8=2k k=6