3.7.5 Pengamiran, SPM Praktis (Kertas 1) Posted on May 13, 2020 by Myhometuition Soalan 11: Diberi= ∫ 2 5 g(x)dx=−2 . Cari (a) nilai bagi ∫ 5 2 g(x)dx, (b) nilai bagi m jika ∫ 2 5 [ g(x)+m( x ) ]dx=19 Penyelesaian: (a) ∫ 5 2 g(x)dx= − ∫ 2 5 g(x)dx =−( −2 ) =2 (b) ∫ 2 5 [ g(x)+m( x ) ]dx=19 ∫ 2 5 g(x)dx+m ∫ 2 5 xdx=19 −2+m [ x 2 2 ] 2 5 =19 m 2 [ x 2 ] 2 5 =21 m 2 [ 25−4 ]=21 21m=42 m=2 Soalan 12: a) Cari nilai bagi ∫ −1 1 ( 3x+1 ) 3 dx. (b) Nilaikan ∫ 3 4 1 2x−4 dx. Penyelesaian: a) ∫ −1 1 ( 3x+1 ) 3 dx=[ ( 3x+1 ) 4 4( 3 ) ] −1 1 = [ ( 3x+1 ) 4 12 ] −1 1 = 1 12 [ 4 4 − ( −2 ) 4 ] = 1 12 ( 256−16 ) =20 (b) ∫ 3 4 1 2x−4 dx= ∫ 3 4 1 ( 2x−4 ) 1 2 dx = ∫ 3 4 ( 2x−4 ) − 1 2 dx = [ ( 2x−4 ) − 1 2 +1 1 2 ( 2 ) ] 3 4 = [ 2x−4 ] 3 4 =[ 2( 4 )−4 − 2( 3 )−4 ] =2− 2 Soalan 13: Diberi y= x 2 2x−1 , tunjukkan dy dx = 2x( x−1 ) ( 2x−1 ) 2 . Seterusnya, nilaikan ∫ −2 2 x( x−1 ) 4 ( 2x−1 ) 2 dx . Penyelesaian: y= x 2 2x−1 dy dx = ( 2x−1 )( 2x )−x( 2 ) ( 2x−1 ) 2 = 4 x 2 −2x−2 x 2 ( 2x−1 ) 2 = 2 x 2 −2x ( 2x−1 ) 2 = 2x( x−1 ) ( 2x−1 ) 2 ( tertunjuk ) ∫ −2 2 2x( x−1 ) ( 2x−1 ) 2 dx = [ x 2 2x−1 ] −2 2 1 8 ∫ −2 2 2x( x−1 ) ( 2x−1 ) 2 dx = 1 8 [ x 2 2x−1 ] −2 2 1 4 ∫ −2 2 x( x−1 ) ( 2x−1 ) 2 dx = 1 8 [ ( 2 2 2( 2 )−1 )−( ( −2 ) 2 2( −2 )−1 ) ] = 1 8 [ ( 4 3 )−( 4 −5 ) ] = 1 8 ( 32 15 ) = 4 15