3.7.5 Pengamiran, SPM Praktis (Kertas 1)


Soalan 11:
Diberi= 2 5 g(x)dx=2 . Cari (a) nilai bagi  5 2 g(x)dx, (b) nilai bagi m jika  2 5 [ g(x)+m( x ) ]dx=19

Penyelesaian:
(a)  5 2 g(x)dx= 2 5 g(x)dx  =( 2 )  =2

(b)  2 5 [ g(x)+m( x ) ]dx=19   2 5 g(x)dx+m 2 5 xdx=19   2+m [ x 2 2 ] 2 5 =19    m 2 [ x 2 ] 2 5 =21     m 2 [ 254 ]=21 21m=42 m=2



Soalan 12:
a) Cari nilai bagi  1 1 ( 3x+1 ) 3 dx. (b) Nilaikan  3 4 1 2x4  dx.

Penyelesaian:
a)  1 1 ( 3x+1 ) 3 dx=[ ( 3x+1 ) 4 4( 3 ) ] 1 1    = [ ( 3x+1 ) 4 12 ] 1 1    = 1 12 [ 4 4 ( 2 ) 4 ]    = 1 12 ( 25616 )    =20

(b)  3 4 1 2x4  dx= 3 4 1 ( 2x4 ) 1 2  dx = 3 4 ( 2x4 ) 1 2  dx = [ ( 2x4 ) 1 2 +1 1 2 ( 2 ) ] 3 4 = [ 2x4 ] 3 4 =[ 2( 4 )4 2( 3 )4 ] =2 2



Soalan 13:
Diberi y= x 2 2x1 , tunjukkan dy dx = 2x( x1 ) ( 2x1 ) 2 . Seterusnya, nilaikan  2 2 x( x1 ) 4 ( 2x1 ) 2  dx .

Penyelesaian:
y= x 2 2x1 dy dx = ( 2x1 )( 2x )x( 2 ) ( 2x1 ) 2     = 4 x 2 2x2 x 2 ( 2x1 ) 2     = 2 x 2 2x ( 2x1 ) 2     = 2x( x1 ) ( 2x1 ) 2  ( tertunjuk ) 2 2 2x( x1 ) ( 2x1 ) 2  dx = [ x 2 2x1 ] 2 2 1 8 2 2 2x( x1 ) ( 2x1 ) 2  dx = 1 8 [ x 2 2x1 ] 2 2 1 4 2 2 x( x1 ) ( 2x1 ) 2  dx = 1 8 [ ( 2 2 2( 2 )1 )( ( 2 ) 2 2( 2 )1 ) ]                            = 1 8 [ ( 4 3 )( 4 5 ) ]                            = 1 8 ( 32 15 )                            = 4 15