3.8.6 Pengamiran, SPM Praktis (Kertas 2)


Soalan 7:
Rajah di bawah menunjukkan suatu lengkung y= 1 4 x 2 +3 yang menyilang suatu garis lurus y = x + 6 pada titik A.

(a) Cari koordinat A.
(b) ) hitung
(i) luas rantau berlorek M,
(ii) isipadu kisaran, dalam sebutan π, apabila rantau berlorek N diputarkan melalui 360o pada paksi-y.


Penyelesaian:
(a)
y= 1 4 x 2 +3..........( 1 ) y=x+6..........( 2 ) Gantikan (2) ke dalam (1), x+6= 1 4 x 2 +3 4x+24= x 2 +12 x 2 4x12=0 ( x+2 )( x6 )=0 x=2   or   x=6 ( ditolak ) Apabila x=2 y=2+6=4 Oleh itu, A=( 2,4 ).


(b)(i)
Pada paksi-xy=0 Dari y=x+6,x=6 Luas kawasan berlorek M =Luas segi tiga+Luas di bawah lengkung = 1 2 ×( 62 )×4+ 2 0 y dx =8+ 2 0 ( 1 4 x 2 +3 ) dx =8+ [ x 3 4( 3 ) +3x ] 2 0 =8+[ 0( ( 2 ) 3 12 +3( 2 ) ) ] =8+[ 0( 8 12 6 ) ] =8+[ 0( 20 3 ) ] =14 2 3  unit 2


(b)(ii)
pada paksi-yx=0,  y= 1 4 ( 0 )+3 y=3 y= 1 4 x 2 +3 4y= x 2 +12 x 2 =4y12 Isipadu N π 3 4 x 2 dy π 3 4 ( 4y12 )dy π 3 4 ( 2 y 2 12y )dy =π [ ( 2 y 2 12y ) ] 3 4 =π[ ( 2 ( 4 ) 2 12( 4 ) )( 2 ( 3 ) 2 12( 3 ) ) ] =π( 16+18 ) =2π  unit 3