Bab 5 Indeks dan Logaritma


Soalan 15 (4 markah):
( a ) Diberi P= log a Q, nyatakan  syarat-syarat bagi a. ( b ) Diberi  log 3 y= 2 log xy 3 , ungkapkan y dalam sebutan x.

Penyelesaian:
(a)
a > 0, a ≠ 1

(b)
log 3 y= 2 log xy 3 log xy y log xy 3 = 2 log xy 3 log xy y=2 y= ( xy ) 2 y= x 2 y 2 1 x 2 = y 2 y y= 1 x 2



Soalan 16 (2 markah):
Diberi 2p + 2p = 2k. Ungkapkan p dalam sebutan k.

Penyelesaian:
2 p + 2 p = 2 k 2( 2 p )= 2 k 2 p = 2 k 2 1 2 p = 2 k1 p=k1



Soalan 17 (3 markah):
Diberi  25 h+3 125 p1 =1, ungkapkan p dalam sebutan h.

Penyelesaian:
25 h+3 125 p1 =1 25 h+3 = 125 p1 ( 5 2 ) h+3 = ( 5 3 ) p1 5 2h+6 = 5 3p3 2h+6=3p3 3p=2h+9 p= 2h+9 3



Soalan 18 (3 markah):
Selesaikan persamaan: log m 324 log m 2m=2

Penyelesaian:
log m 324 log m 2m=2 log m 324 log m 2m log m m 1 2 =2 log m 3242( log m 2m log m m )=2 log m 3242 log m 2m=2 log m 324 log m ( 2m ) 2 =lo g m m 2 log m ( 324 4 m 2 )=lo g m m 2 324 4 m 2 = m 2 4 m 4 =324 m 4 =81 m=±3( 3 ditolak )