Long Question 4 Posted on May 16, 2020 by Myhometuition Question 4: Diagram below shows a curve x = y2 – 1 which intersects the straight line 3y = 2x at point Q. Calculate the volume generated when the shaded region is revolved 360o about the y-axis. Solution: x= y 2 −1→( 1 ) 3y=2x x= 3 2 y→( 2 ) Substitute (2) into (1), 3 2 y= y 2 −1 2 y 2 −3y−2=0 ( 2y+1 )( y−2 )=0 y=− 1 2 or y=2 When y=2,x= 3 2 ( 2 )=3, Q=( 3, 2 ) I 1 ( Volume of cone ) = 1 3 π r 2 h= 1 3 π ( 3 ) 2 ( 2 ) =6π unit 3 I 2 ( Volume of the curve ) = π ∫ 1 2 x 2 dy = π ∫ 1 2 ( y 2 −1 ) 2 dy = π ∫ 1 2 ( y 4 −2 y 2 +1 )dy =π [ y 5 5 − 2 y 3 3 +y ] 1 2 =π[ ( 2 5 5 − 2 ( 2 ) 3 3 +2 )−( 1 5 5 − 2 ( 1 ) 3 3 +1 ) ] =π( 46 15 − 8 15 ) = 38 15 π unit 3 ∴ Volume generated = I 1 − I 2 =6π− 38 15 π = 52 15 π unit 3 Post navigation ← SPM Practice Question 13 & 14 Long Question 7 →