Long Question 6


Question 6:
Diagram below shows a trapezium OABC and point D lies on AC.


It is given that  OC =18 b ˜ ,  OA =6 a ˜  and  OC =2 AB . (a) Express in terms of  a ˜  and  b ˜ , (i)  AC (ii)  OB (b) It is given that  AD =k AC , where k is a constant. Find the value of k if the points OD and B are collinear.


Solution
:

(a)(i)
AC = AO + OC       =6 a ˜ +18 b ˜       =18 b ˜ 6 a ˜


(a)(ii)
OC =2 AB 18 b ˜ =2( AO + OB ) 18 b ˜ =2( 6 a ˜ + OB ) 18 b ˜ =12 a ˜ +2 OB OB =6 a ˜ +9 b ˜


(b)
OD =h OB =h( 6 a ˜ +9 b ˜ ) =6h a ˜ +9h b ˜ AD = OD OA =6h a ˜ +9h b ˜ 6 a ˜ = a ˜ ( 6h6 )+9h b ˜ AD =k AC a ˜ ( 6h6 )+9h b ˜ =k( 18 b ˜ 6 a ˜ ) a ˜ ( 6h6 )+9h b ˜ =6k a ˜ +18k b ˜ 6h6=6k h1=k h=1k..........( 1 ) 9h=18k h=2k From ( 1 ), 1k=2k 3k=1 k= 1 3