Long Question 7


Question 7:
Diagram below shows a curve y= 1 4 x 2 +3 which intersects the straight line y = x + 6 at point A.


(a) Find the coordinates of A.
(b) Calculate
(i) the area of the shaded region M,
(ii) the volume generated, in terms of π, when the shaded region N is revolved 360o about the y-axis.

Solution:
(a)
y= 1 4 x 2 +3..........( 1 ) y=x+6..........( 2 ) Substitute (2) into (1), x+6= 1 4 x 2 +3 4x+24= x 2 +12 x 2 4x12=0 ( x+2 )( x6 )=0 x=2   or   x=6 ( rejected ) When x=2 y=2+6=4 Therefore, A=( 2,4 ).


(b)(i)
At x-axis, y=0 From y=x+6,x=6 Area of region M =Area of triangle+Area under the curve = 1 2 ×( 62 )×4+ 2 0 y dx =8+ 2 0 ( 1 4 x 2 +3 ) dx =8+ [ x 3 4( 3 ) +3x ] 2 0 =8+[ 0( ( 2 ) 3 12 +3( 2 ) ) ] =8+[ 0( 8 12 6 ) ] =8+[ 0( 20 3 ) ] =14 2 3  unit 2


(b)(ii)
At y-axis, x=0,  y= 1 4 ( 0 )+3 y=3 y= 1 4 x 2 +3 4y= x 2 +12 x 2 =4y12 Volume of N π 3 4 x 2 dy π 3 4 ( 4y12 )dy π 3 4 ( 2 y 2 12y )dy =π [ ( 2 y 2 12y ) ] 3 4 =π[ ( 2 ( 4 ) 2 12( 4 ) )( 2 ( 3 ) 2 12( 3 ) ) ] =π( 16+18 ) =2π  unit 3