Long Question 7


Question 7:
Diagram below shows a curve y=14x2+3 which intersects the straight line y = x + 6 at point A.


(a) Find the coordinates of A.
(b) Calculate
(i) the area of the shaded region M,
(ii) the volume generated, in terms of π, when the shaded region N is revolved 360o about the y-axis.

Solution:
(a)
y=14x2+3..........(1)y=x+6..........(2)Substitute (2) into (1),x+6=14x2+34x+24=x2+12x24x12=0(x+2)(x6)=0x=2   or   x=6 (rejected)When x=2y=2+6=4Therefore, A=(2,4).


(b)(i)
At x-axis, y=0From y=x+6,x=6Area of region M=Area of triangle+Area under the curve=12×(62)×4+02y dx=8+02(14x2+3) dx=8+[x34(3)+3x]02=8+[0((2)312+3(2))]=8+[0(8126)]=8+[0(203)]=1423 unit2


(b)(ii)
At y-axis, x=0, y=14(0)+3y=3y=14x2+34y=x2+12x2=4y12Volume of Nπ43x2dyπ43(4y12)dyπ43(2y212y)dy=π[(2y212y)]43=π[(2(4)212(4))(2(3)212(3))]=π(16+18)=2π unit3