Question 7:
Diagram below shows quadrilateral OPBC. The straight line AC intersects the straight line PQ at point B.

It is given that →OP=a˜, →OQ=b˜, →OA=4→AP, →OC=3→OQ, →PB=h→PQ and→AB=k→AC.(a) Express →OB in terms of h, a˜ and b˜.(b) Express →OB in terms of k, a˜ and b˜.(c)(i) Find the value of h and of k.(ii) Hence, state →OB in terms of a˜ and b˜.
Solution:
(a)
→OB=→OP+→PB =a˜+h→PQ =a˜+h(→PO+→OQ) =a˜+h(−a˜+b˜) =a˜−ha˜+hb˜→OB=(1−h)a˜+hb˜
(b)
→OB=→OP+→PB =a˜+→PA+→AB =a˜+(−15→OP)+k→AC =a˜+(−15a˜)+k(→AO+→OC) =45a˜+k(−45→OP+3→OQ) =45a˜+k(−45a˜+3b˜) =45a˜−45ka˜+3kb˜→OB=45(1−k)a˜+3kb˜
(c)(i)
(1−h)a˜+hb˜=45(1−k)a˜+3kb˜1−h=45−45k..........(1)h=3k..........(2)Substitute (2) into the (1) 1−3k=45−45k5−15k=4−4k11k=1k=111Substitute k=111 into (2)h=3(111) =311
(c)(ii)
→OB=(1−h)a˜+hb˜when h=311=(1−311)a˜+(311)b˜=811a˜+311b˜
Diagram below shows quadrilateral OPBC. The straight line AC intersects the straight line PQ at point B.

It is given that →OP=a˜, →OQ=b˜, →OA=4→AP, →OC=3→OQ, →PB=h→PQ and→AB=k→AC.(a) Express →OB in terms of h, a˜ and b˜.(b) Express →OB in terms of k, a˜ and b˜.(c)(i) Find the value of h and of k.(ii) Hence, state →OB in terms of a˜ and b˜.
Solution:
(a)
→OB=→OP+→PB =a˜+h→PQ =a˜+h(→PO+→OQ) =a˜+h(−a˜+b˜) =a˜−ha˜+hb˜→OB=(1−h)a˜+hb˜
(b)
→OB=→OP+→PB =a˜+→PA+→AB =a˜+(−15→OP)+k→AC =a˜+(−15a˜)+k(→AO+→OC) =45a˜+k(−45→OP+3→OQ) =45a˜+k(−45a˜+3b˜) =45a˜−45ka˜+3kb˜→OB=45(1−k)a˜+3kb˜
(c)(i)
(1−h)a˜+hb˜=45(1−k)a˜+3kb˜1−h=45−45k..........(1)h=3k..........(2)Substitute (2) into the (1) 1−3k=45−45k5−15k=4−4k11k=1k=111Substitute k=111 into (2)h=3(111) =311
(c)(ii)
→OB=(1−h)a˜+hb˜when h=311=(1−311)a˜+(311)b˜=811a˜+311b˜