Long Question 7


Question 7:
Diagram below shows quadrilateral OPBC. The straight line AC intersects the straight line PQ at point B.


It is given that  OP = a ˜ ,  OQ = b ˜ ,  OA =4 AP ,  OC =3 OQ ,  PB =h PQ  and AB =k AC . (a) Express  OB  in terms of h a ˜  and  b ˜ . (b) Express  OB  in terms of k a ˜  and  b ˜ . (c)(i) Find the value of h and of k. (ii) Hence, state  OB  in terms of  a ˜  and  b ˜ .


Solution:
(a)
OB = OP + PB  = a ˜ +h PQ  = a ˜ +h( PO + OQ )  = a ˜ +h( a ˜ + b ˜ )  = a ˜ h a ˜ +h b ˜ OB =( 1h ) a ˜ +h b ˜


(b)
OB = OP + PB  = a ˜ + PA + AB  = a ˜ +( 1 5 OP )+k AC  = a ˜ +( 1 5 a ˜ )+k( AO + OC )  = 4 5 a ˜ +k( 4 5 OP +3 OQ )  = 4 5 a ˜ +k( 4 5 a ˜ +3 b ˜ )  = 4 5 a ˜ 4 5 k a ˜ +3k b ˜ OB = 4 5 ( 1k ) a ˜ +3k b ˜


(c)(i)
( 1h ) a ˜ +h b ˜ = 4 5 ( 1k ) a ˜ +3k b ˜ 1h= 4 5 4 5 k..........( 1 ) h=3k..........( 2 ) Substitute ( 2 ) into the ( 1 )  13k= 4 5 4 5 k 515k=44k 11k=1 k= 1 11 Substitute k= 1 11  into ( 2 ) h=3( 1 11 )   = 3 11


(c)(ii)
OB =( 1h ) a ˜ +h b ˜ when h= 3 11 =( 1 3 11 ) a ˜ +( 3 11 ) b ˜ = 8 11 a ˜ + 3 11 b ˜