Long Question 8


Question 8:
Diagram below shows the curve y= 4 x 2 and the straight line y = mx + c. The straight line y = mx + c is a tangent to the curve at (2, 1).

(a) Find the value of m and of c.

(b) Calculate the area of the shaded region.

(c) It is given that the volume generated when the region bounded by the curve, the x–axis and the straight lines x = 2 and x = h is revolved through 360o about the x-axis is 38π 81  unit 3 .
Find the value of h, such that h > 2.

Solution:
(a)
y= 4 x 2 =4 x 2 dy dx =8 x 3 = 8 x 3 At x=2, dy dx = 8 2 3 =1 Equation of tangent: y y 1 =m( x x 1 ) y1=1( x2 ) y=x+2+1 y=x+3 m=1, c=3


(b)
At x-axis, y=0 From the straight line y=x+3,x=3 Area of the shaded region =Area under the curveArea of triangle = 2 4 y dx 1 2 ×1×1 = 2 4 ( 4 x 2 ) dx 1 2 = [ 4 x 1 1 ] 2 4 1 2 = [ 4 x ] 2 4 1 2 =[ 4 4 ( 4 2 ) ] 1 2 = 1 2  unit 2


(c)
Volume generated= 38π 81 π 2 h y 2  dx = 38π 81 2 h ( 4 x 2 ) 2 d x= 38 81 2 h ( 16 x 4 )dx = 38 81 2 h ( 16 x 4 )dx = 38 81 [ 16 x 3 3 ] 2 h = 38 81 [ 16 3 x 3 ] 2 h = 38 81 16 3 h 3 ( 16 3 ( 2 ) 3 )= 38 81 16 3 h 3 = 16 24 38 81 16 3 h 3 = 16 81 3 h 3 =81 h 3 =27 h=3