Long Question 8 Posted on May 16, 2020 by Myhometuition Question 8:Diagram below shows quadrilateral OPQR. The straight line PR intersects the straight line OQ at point S. It is given that OP → =7 x ˜ , OR → =5 y ˜ , PS:SR=3:1 and OR → is parallel to PQ → . (a) Express in terms of x ˜ and y ˜ , (i) PR → (ii) OS → (b) Using PQ → =m OR → and SQ → =n OS → , where m and n are constants, Find the value of m and of n. (c) Given that | y ˜ |=4 units and the area of ORS is 50 cm 2 , find the perpendicular distance from point S to OR. Solution: (a)(i) PR → = PO → + OR → =−7 x ˜ +5 y ˜ (a)(ii) OS → = OP → + PS → =7 x ˜ + 3 4 PR → =7 x ˜ + 3 4 ( −7 x ˜ +5 y ˜ ) =7 x ˜ − 21 4 x ˜ + 15 4 y ˜ = 7 4 x ˜ + 15 4 y ˜ (b) PS → = PQ → − SQ → 3 4 PR → =m OR → −n OS → 3 4 ( −7 x ˜ +5 y ˜ )=m( 5 y ˜ )−n( 7 4 x ˜ + 15 4 y ˜ ) − 21 4 x ˜ + 15 4 y ˜ =5m y ˜ − 7 4 n x ˜ − 15 4 m y ˜ − 21 4 x ˜ + 15 4 y ˜ =− 7 4 n x ˜ + 5 4 m y ˜ −21 x ˜ +15 y ˜ =−7n x ˜ +5m y ˜ 7n=21 n=3 5m=15 m=3 (c) Area of ΔORS=50 1 2 ×( 5 y ˜ )×t=50 1 2 ×5( 4 )×t=50 10t=50 t=5 ∴ Perpendicular distance from point S to OR=5 units.