(Long Questions) – Question 8


Question 8:
Diagram below shows a cyclic quadrilateral PQRS.


(a) Calculate
(i) the length, in cm, of PR,
(ii) ∠PRQ.
(b) Find
(i) the area, in cm2, of ∆ PRS,
(ii) the short distance, in cm, from point S to PR.

Solution:
(a)(i)
P R 2 = 7 2 + 8 2 2( 7 )( 8 )cos 80 o P R 2 =11319.4486 PR= 93.5514 PR=9.6722 cm


(a)(ii)
In cyclic quadrilateral PQR+PSR=180 PQR+80=180 PQR= 100 o sinQPR 3 = sin100 9.6722 sinQPR=0.3055 QPR= 17 o 47' PRQ= 180 o 100 o 17 o 47'   = 62 o 13'


(b)(i)
Area of PRS = 1 2 ×7×8sin 80 o =27.5746  cm 2


(b)(ii)


Area of PRS=27.5746 1 2 ×9.6722×h=27.5746    h= 27.5746×2 9.6722  =5.7018 cm Shortest distance=5.7018 cm