(Long Questions) – Question 8


Question 8:
Diagram below shows a cyclic quadrilateral PQRS.


(a) Calculate
(i) the length, in cm, of PR,
(ii) ∠PRQ.
(b) Find
(i) the area, in cm2, of ∆ PRS,
(ii) the short distance, in cm, from point S to PR.

Solution:
(a)(i)
PR2=72+822(7)(8)cos80oPR2=11319.4486PR=93.5514PR=9.6722 cm


(a)(ii)
In cyclic quadrilateralPQR+PSR=180PQR+80=180PQR=100osinQPR3=sin1009.6722sinQPR=0.3055QPR=17o47'PRQ=180o100o17o47'  =62o13'


(b)(i)
Area of PRS=12×7×8sin80o=27.5746 cm2


(b)(ii)


Area of PRS=27.574612×9.6722×h=27.5746   h=27.5746×29.6722 =5.7018 cmShortest distance=5.7018 cm