Question 8:
Solution:
(a)
s=(t−3t)2s=(t−3t)(t−3t)s=t2−6+9t2s=t2−6+9t−2dsdt=2t−18t−3=2t−18t3
(b)
s=(t+1)(3−5t)t2s=3t−5t2+3−5tt2=−5t2−2t+3t2s=−5−2t+3t2=−5−2t−1+3t−2dsdt=2t−2−6t−3=2t2−6t3
Find
dsdt
for each of the following functions.
(a) s=(t−3t)2(b) s=(t+1)(3−5t)t2
(a)
s=(t−3t)2s=(t−3t)(t−3t)s=t2−6+9t2s=t2−6+9t−2dsdt=2t−18t−3=2t−18t3
(b)
s=(t+1)(3−5t)t2s=3t−5t2+3−5tt2=−5t2−2t+3t2s=−5−2t+3t2=−5−2t−1+3t−2dsdt=2t−2−6t−3=2t2−6t3
Question 9:
Given that y=1−5x4x−3, find dydx.
Solution:
dydx=vdudx−udvdxv2=(x−3).−20x3−(1−5x4).1(x−3)2dydx=−20x4+60x3−1+5x4(x−3)2dydx=−15x4+60x3−1(x−3)2
Given that y=1−5x4x−3, find dydx.
Solution:
dydx=vdudx−udvdxv2=(x−3).−20x3−(1−5x4).1(x−3)2dydx=−20x4+60x3−1+5x4(x−3)2dydx=−15x4+60x3−1(x−3)2
Question 10:
Given that f(x)=(x2−3)51−3x, find f'
Solution:
Given that f(x)=(x2−3)51−3x, find f'
Solution: