Long Question 10


Question 10 (10 marks):
Diagram shows a triangle ABC. The straight line AE intersects with the straight line BC at point D. Point V lies on the straight line AE.

It is given that  BD = 1 3 BC , AC =6 x ˜  and  AB =9 y ˜ . ( a ) Express in terms of  x ˜  and / or  y ˜ :    ( i )  BC ,    ( ii )  AD . ( b ) It is given that  AV =m AD  and  BV =n( x ˜ 9 y ˜ ), where m and n are constants.   Find the value of m and of n. ( c ) Given  AE =h x ˜ +9 y ˜ , where h is a constant, find the value of h.

Solution: 
(a)(i)
BC = BA + AC  =9 y ˜ +6 x ˜  =6 x ˜ 9 y ˜

(a)(ii)
AD = AB + BD  =9 y ˜ + 1 3 BC  =9 y ˜ + 1 3 ( 6 x ˜ 9 y ˜ )  =9 y ˜ +2 x ˜ 3 y ˜  =2 x ˜ +6 y ˜


(b)
Given  AV =m AD =m( 2 x ˜ +6 y ˜ ) =2m x ˜ +6m y ˜ AV = AB + BV    = 9 y ˜ +n( x ˜ 9 y ˜ )   =9 y ˜ +n x ˜ 9n y ˜   =n x ˜ +( 99n ) y ˜ By equating the coefficients of  x ˜  and  y ˜ 2m x ˜ +6m y ˜ =n x ˜ +( 99n ) y ˜ 2m=n n=2m.............( 1 ) 6m=99n.............( 2 ) Substitute (1) into (2), 6m=99( 2m ) 6m=918m 24m=9 m= 9 24 = 3 8 From ( 1 ): n=2( 3 8 )= 3 4


(c)
A, D and E are collinear. AD =k( AE ) AD =k( h x ˜ +9 y ˜ ) 2 x ˜ +6 y ˜ =kh x ˜ +9k y ˜ Equating the coefficients of  y ˜ : 9k=6 k= 6 9 k= 2 3 Equating the coefficients of  x ˜ : kh=2 ( 2 3 )h=2 h=2× 3 2 h=3