Long Question 10 Posted on May 17, 2020 by Myhometuition Question 10 (10 marks):Diagram shows a triangle ABC. The straight line AE intersects with the straight line BC at point D. Point V lies on the straight line AE. It is given that BD → = 1 3 BC → , AC → =6 x ˜ and AB → =9 y ˜ . ( a ) Express in terms of x ˜ and / or y ˜ : ( i ) BC → , ( ii ) AD → . ( b ) It is given that AV → =m AD → and BV → =n( x ˜ −9 y ˜ ), where m and n are constants. Find the value of m and of n. ( c ) Given AE → =h x ˜ +9 y ˜ , where h is a constant, find the value of h. Solution: (a)(i) BC → = BA → + AC → =−9 y ˜ +6 x ˜ =6 x ˜ −9 y ˜ (a)(ii) AD → = AB → + BD → =9 y ˜ + 1 3 BC → =9 y ˜ + 1 3 ( 6 x ˜ −9 y ˜ ) =9 y ˜ +2 x ˜ −3 y ˜ =2 x ˜ +6 y ˜ (b) Given AV → =m AD → =m( 2 x ˜ +6 y ˜ ) =2m x ˜ +6m y ˜ AV → = AB → + BV → = 9 y ˜ +n( x ˜ −9 y ˜ ) =9 y ˜ +n x ˜ −9n y ˜ =n x ˜ +( 9−9n ) y ˜ By equating the coefficients of x ˜ and y ˜ , 2m x ˜ +6m y ˜ =n x ˜ +( 9−9n ) y ˜ 2m=n n=2m.............( 1 ) 6m=9−9n.............( 2 ) Substitute (1) into (2), 6m=9−9( 2m ) 6m=9−18m 24m=9 m= 9 24 = 3 8 From ( 1 ): n=2( 3 8 )= 3 4 (c) A, D and E are collinear. AD → =k( AE → ) AD → =k( h x ˜ +9 y ˜ ) 2 x ˜ +6 y ˜ =kh x ˜ +9k y ˜ Equating the coefficients of y ˜ : 9k=6 k= 6 9 k= 2 3 Equating the coefficients of x ˜ : kh=2 ( 2 3 )h=2 h=2× 3 2 h=3