Long Question 9


Question 9 (10 marks):
Diagram 5 shows triangles OAQ and OPB where point P lies on OA and point Q lies on OB. The straight lines AQ and PB intersect at point R.
It is given that  OA =18 x ˜ ,  OB =16 y ˜ , OP:PA=1:2, OQ:QB=3:1, PR =m PB  and  QR =n QA , where m and n are constants. ( a ) Express  OR  in terms of    ( i ) m,  x ˜  and  y ˜ ,    ( ii ) n,  x ˜  and  y ˜ , ( b ) Hence, find the value of m and of n. ( c ) Given | x ˜ |=2 units, | y ˜ |=1 unit and OA is perpendicular to OB calculate | PR |.

Solution
(a)(i)
OR = OP + PR  = 1 3 OA +m PB  = 1 3 ( 18 x ˜ )+m( PO + OB )  =6 x ˜ +m( 6 x ˜ +16 y ˜ )

(a)(ii)
OR = OQ + QR  = 3 4 OB +n QA  = 3 4 ( 16 y ˜ )+n( QO + OA )  =12 y ˜ +n( 12 y ˜ +18 x ˜ )  =( 1212n ) y ˜ +18n x ˜


(b)
6 x ˜ +m( 6 x ˜ +16 y ˜ )=( 1212n ) y ˜ +18n x ˜ 6 x ˜ 6m x ˜ +16m y ˜ =18n x ˜ +12 y ˜ 12n y ˜ by comparison; 66m=18n 1m=3n m=13n..............( 1 ) 16m=1212n 4m=33n..............( 2 ) Substitute (1) into (2), 4( 13n )=33n 412n=33n 9n=1 n= 1 9 Substitute n= 1 9  into (1), m=13( 1 9 ) m= 2 3

[adinserter block="3"]

(c)
| x ˜ |=2| y ˜ |=1  PR = 2 3 PB  = 2 3 ( 6 x ˜ +16 y ˜ )  =4 x ˜ + 32 3 y ˜ | PR |= [ 4( 2 ) ] 2 + [ 32 3 ( 1 ) ] 2   = 1600 9   = 40 3  units