Long Questions (Question 10)


Question 10 (7 marks):
Solution by scale drawing is not accepted.
Diagram shows the locations of town M and town N drawn on a Cartesian plane.


PQ
is a straight road such that the distance from town M and town N to any point on the road is always equal.
(a) Find the equation of PQ.

(b) Another straight road, ST with an equation y = 2x + 7 is to be built.
(i) A traffic light is to be installed at the crossroads of the two roads.
Find the coordinates of the traffic light.
(ii) Which of the two roads passes through town L  ( 4 3 ,1 )?

Solution:
(a)
T( x,y ) is a point on PQ. TM=TN [ x ( 4 ) 2 ]+ [ y( 1 ) ] 2 = ( x2 ) 2 + ( y1 ) 2 ( x+4 ) 2 + ( y+1 ) 2 = ( x2 ) 2 + ( y1 ) 2 ( x+4 ) 2 + ( y+1 ) 2 = ( x2 ) 2 + ( y1 ) 2 x 2 +8x+16+ y 2 +2y+1 = x 2 4x+4+ y 2 2y+1 8x+2y+17+4x+2y5=0 12x+4y+12=0 3x+y+3=0 Equation of PQ:3x+y+3=0


(b)(i)
y=2x+7   ............ ( 1 ) 3x+y+3=0 ............ ( 2 ) Substitute ( 1 ) into ( 2 ): 3x+2x+7+3=0 5x=10 x=2 When x=2, From ( 1 ), y=2( 2 )+7=3 Coordinates of traffic light=( 2,3 ).


(b)(ii)
L( 4 3 ,1 ):x= 4 3 ,y=1 The equation of ST:y=2x+7 Left hand side: y=1 Right hand side: 2( 4 3 )+7=4 1 3 Thus, the road y=2x+7 does not  pass through L. The equation of PQ:3x+y+3=0 Left hand side:  3x+y+3=3( 4 3 )+1+3    =4+4=0 Right hand side=0 Left hand side=Right hand side Thus, the road 3x+y+3=0 passes through L.