Long Questions (Question 3 & 4)


Question 3:
The result of a study shows that 20% of students failed the Form 5 examination in a school. If 8 students from the school are chosen at random, calculate the probability that
(a) exactly 2 of them who failed,
(b) less than 3 of them who failed.

Solution:
(a)
p = 20% = 0.2,
q = 1 – 0.2 = 0.8
X ~ B (8, 0.2)
P (X = 2)
C 8 2  (0.2)2 (0.8)6
= 0.2936

(b)
P (X < 3)
= (X = 0) + P (X = 1) + P (X = 2)
= C 8 0  (0.2)0(0.8)+   C 8 1  (0.2)1(0.8)7 +   C 8 2  (0.2)2(0.8)6
= 0.16777 + 0.33554 + 0.29360
= 0.79691



Question 4:
In a survey carried out in a particular district, it is found that three out of five families own a LCD television.
If 10 families are chosen at random from the district, calculate the probability that at least 8 families own a LCD television.

Solution:
Let X be the random variable representing the number of families who own a LCD television. X~B( n,p ) X~B( 10,  3 5 ) p= 3 5 =0.6 q=10.6=0.4 P(X=r)= c n r . p r . q nr P( at least 8 families own a LCD television ) P(X8) =P( X=8 )+P( X=9 )+P( X=10 ) = C 10 8 ( 0.6 ) 8 ( 0.4 ) 2 + C 10 9 ( 0.6 ) 9 ( 0.4 ) 1 + C 10 10 ( 0.6 ) 10 ( 0.4 ) 0 =0.1209+0.0403+0.0060 =0.1672