Long Questions (Question 7)


Question 7:
In a boarding school entry exam, 300 students sat for a mathematics test. The marks obtained follow a normal distribution with a mean of 56 and a standard deviation of 8.

(a) Find the number of students who pass the test if the passing mark is 40.

(b) If 12% of the students pass the test with grade A, find the minimum mark to obtain grade A.

Solution:
Let X=marks obtained by students X~N( 56, 8 2 ) ( a ) P( X40 )=P( Z 4056 8 )    =P( Z2 )    =1P( Z2 )    =10.02275    =0.9773 Number of students who pass the test =0.9773×300 =293 ( b ) Let the minimum mark to obtain grade A be k P( Xk )=0.12 P( Z k56 8 )=0.12   k56 8 =1.17   k=( 1.17 )( 8 )+56 =65.36

Thus, the minimum mark to obtain grade A is 66.