Long Question 5 Posted on May 18, 2020 by Myhometuition Question 5 (10 marks): ( a ) Prove sin( 3x+ π 6 )−sin( 3x− π 6 )=cos3x ( b ) Hence, ( i ) solve the equation sin( 3x 2 + π 6 )−sin( 3x 2 − π 6 )= 1 2 for 0≤x≤2π and give your answer in the simplest fraction form in terms of π radian. ( ii ) sketch the graph of y=sin( 3x+ π 6 )−sin( 3x− π 6 )− 1 2 for 0≤x≤π. Solution: ( a ) Left hand side, sin( 3x+ π 6 )−sin( 3x− π 6 ) =[ sin3xcos π 6 +cos3xsin π 6 ]−[ sin3xcos π 6 −cos3xsin π 6 ] =2[ cos3xsin π 6 ] =2[ cos3x( 1 2 ) ] =cos3x( right hand side ) ( b )( i ) sin( 3x 2 + π 6 )−sin( 3x 2 − π 6 )= 1 2 ,0≤x≤2π cos 3x 2 = 1 2 3x 2 = π 3 ,( 2π− π 3 ),( 2π+ π 3 ) 3x 2 = π 3 , 5π 3 , 7π 3 x= 2π 9 , 10π 9 , 14π 9 ( b )( ii ) y=sin( 3x+ π 6 )−sin( 3x− π 6 )− 1 2 for 0≤x≤π. y=cos3x− 1 2