(Long Questions) – Question 9


Question 9 (10 marks):
Solution by scale drawing is not accepted.
Diagram shows a transparent prism with a rectangular base PQRS. The inclined surface PQUT is a square with sides 12 cm and the inclined surface RSTU is a rectangle. PTS is a uniform cross section of the prism. QST is a green coloured plane in the prism.


It is given that ∠PST = 37o and ∠TPS = 45o.
Find
(a) the length, in cm, of ST,
(b) the area, in cm2, of the green coloured plane.
(c) the shortest length, in cm, from point T to the straight line QS.


Solution:
(a)



ST sin 45 o = 12 sin 37 o ST= 12 sin 37 o ×sin 45 o ST=14.1 cm


(b)
Q T 2 =Q P 2 +P T 2 Q T 2 = 12 2 + 12 2 QT= 12 2 + 12 2 =16.97 cm PTS= 180 o 45 o 37 o = 98 o PS sin 98 o = 12 sin 37 o PS= 12 sin 37 o ×sin 98 o PS=19.75 cm Q S 2 =Q P 2 +P S 2 QS= Q P 2 +P S 2 QS= 12 2 + 19.75 2 QS=23.11 cm




Q S 2 =Q T 2 +S T 2 2( QT )( ST )cosQTS 23.11 2 = 16.97 2 + 14.1 2 2( 16.97 )( 14.1 )cosQTS cosQTS= 16.97 2 + 14.1 2 23.11 2 2( 16.97 )( 14.1 ) cosQTS= 47.28 478.55 QTS= 95.67 o Thus, area of green coloured plane QTS = 1 2 ( 16.97 )( 14.1 )sin 95.67 o =119.05  cm 2


(c)



Let the shortest length from point T to the straight line QS is h. Area of ΔQTS=119.05 1 2 ( h )( 23.11 )=119.05 h=10.3 cm